首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1206篇
  免费   72篇
  国内免费   1篇
  1279篇
  2024年   3篇
  2023年   15篇
  2022年   31篇
  2021年   40篇
  2020年   35篇
  2019年   32篇
  2018年   27篇
  2017年   31篇
  2016年   47篇
  2015年   83篇
  2014年   90篇
  2013年   121篇
  2012年   124篇
  2011年   113篇
  2010年   84篇
  2009年   49篇
  2008年   54篇
  2007年   70篇
  2006年   49篇
  2005年   56篇
  2004年   35篇
  2003年   28篇
  2002年   26篇
  2001年   6篇
  2000年   3篇
  1999年   7篇
  1998年   5篇
  1997年   4篇
  1996年   3篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1982年   1篇
  1975年   1篇
  1974年   1篇
  1966年   1篇
  1959年   1篇
排序方式: 共有1279条查询结果,搜索用时 15 毫秒
1.
The ability to design customized proteins to perform specific tasks is of great interest. We are particularly interested in the design of sensitive and specific small molecule ligand-binding proteins for biotechnological or biomedical applications. Computational methods can narrow down the immense combinatorial space to find the best solution and thus provide starting points for experimental procedures. However, success rates strongly depend on accurate modeling and energetic evaluation. Not only intra- but also intermolecular interactions have to be considered. To address this problem, we developed PocketOptimizer, a modular computational protein design pipeline, that predicts mutations in the binding pockets of proteins to increase affinity for a specific ligand. Its modularity enables users to compare different combinations of force fields, rotamer libraries, and scoring functions. Here, we present a much-improved version––PocketOptimizer 2.0. We implemented a cleaner user interface, an extended architecture with more supported tools, such as force fields and scoring functions, a backbone-dependent rotamer library, as well as different improvements in the underlying algorithms. Version 2.0 was tested against a benchmark of design cases and assessed in comparison to the first version. Our results show how newly implemented features such as the new rotamer library can lead to improved prediction accuracy. Therefore, we believe that PocketOptimizer 2.0, with its many new and improved functionalities, provides a robust and versatile environment for the design of small molecule-binding pockets in proteins. It is widely applicable and extendible due to its modular framework. PocketOptimizer 2.0 can be downloaded at https://github.com/Hoecker-Lab/pocketoptimizer .  相似文献   
2.
Tumors often harbor orders of magnitude more mutations than healthy tissues. The increased number of mutations may be due to an elevated mutation rate or frequent cell death and correspondingly rapid cell turnover, or a combination of the two. It is difficult to disentangle these two mechanisms based on widely available bulk sequencing data, where sequences from individual cells are intermixed and, thus, the cell lineage tree of the tumor cannot be resolved. Here we present a method that can simultaneously estimate the cell turnover rate and the rate of mutations from bulk sequencing data. Our method works by simulating tumor growth and finding the parameters with which the observed data can be reproduced with maximum likelihood. Applying this method to a real tumor sample, we find that both the mutation rate and the frequency of death may be high.  相似文献   
3.
4.
Since its outbreak in 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) keeps surprising the medical community by evolving diverse immune escape mutations in a rapid and effective manner. To gain deeper insight into mutation frequency and dynamics, we isolated ten ancestral strains of SARS-CoV-2 and performed consecutive serial incubation in ten replications in a suitable and common cell line and subsequently analysed them using RT-qPCR and whole genome sequencing. Along those lines we hoped to gain fundamental insights into the evolutionary capacity of SARS-CoV-2 in vitro. Our results identified a series of adaptive genetic changes, ranging from unique convergent substitutional mutations and hitherto undescribed insertions. The region coding for spike proved to be a mutational hotspot, evolving a number of mutational changes including the already known substitutions at positions S:484 and S:501. We discussed the evolution of all specific adaptations as well as possible reasons for the seemingly inhomogeneous potential of SARS-CoV-2 in the adaptation to cell culture. The combination of serial passage in vitro with whole genome sequencing uncovers the immense mutational potential of some SARS-CoV-2 strains. The observed genetic changes of SARS-CoV-2 in vitro could not be explained solely by selectively neutral mutations but possibly resulted from the action of directional selection accumulating favourable genetic changes in the evolving variants, along the path of increasing potency of the strain. Competition among a high number of quasi-species in the SARS-CoV-2 in vitro population gene pool may reinforce directional selection and boost the speed of evolutionary change.  相似文献   
5.
BACKGROUND: Natural killer (NK) and NK T (NKT) cells are important in innate immune defense. Their unequivocal identification requires at least four antigens. Based on the expression of additional antigens, they can be further divided into functional subsets. For more accurate immunophenotyping and to describe multiple expression patterns of leukocyte subsets, an increased number of measurable colors is necessary. To take advantage of the technologic features offered by slide-based cytometry, repeated analysis was combined with sequential optical-filter changing. METHODS: Human peripheral blood leukocytes from healthy adult volunteers were labeled with antibodies by direct or indirect staining. Tandem dyes of Cy7 (phycoerythrin [PE]-/allophycocyanin [APC]-Cy7), Cy5.5 (PE-/APC-Cy5.5), and PE-Cy5 and the fluorochromes fluorescein isothiocyanate (FITC), PE, and APC were tested alone and in combinations. Optical filters of the laser scanning cytometer were 555 DRLP/BP 530/30 nm for photomultiplier tube (PMT) 1/FITC, 605 DRLP/BP 580/30 nm for PMT 2/PE, 740 DCXR/BP 670/20 nm for PMT 3/Cy5/APC, and BP 810/90 nm for PMT 4/Cy7. Filter PMT 3 was replaced for detection of PE/Cy5.5 and APC/Cy5.5 by 740 LP/BP 710/20 nm and the sample was remeasured. Both data files were merged into one to combine the different information on a single-cell basis. The combination of eight antibodies against CD3, CD4, CD8, CD14, CD16, CD19, CD45, and CD56 was used to characterize NK and NKT cells and their subsets. RESULTS: In this way Cy5.5 is measurable at 488-nm and 633-nm excitation. Further, with the two different filters it is possible to distinguish Cy5 from Cy5.5 in the same detection channel (PMT 3). With this method we identified NK and NKT cells, subsets of NK (CD3-16+56+, CD3-16+56-, CD3-16-56+) and NKT (CD3+16+56+, CD3+16-56+) and their CD4+8-, CD4-8+, CD4-8- and CD4+8+ subsets. CONCLUSION: With our adaptations it is possible to discriminate tandem conjugates of Cy5, Cy5.5, and Cy7 for eight-color immunophenotyping. Using this method, novel rare subsets of NK and NKT cells that are CD4/CD8 double positive are reported for the first time.  相似文献   
6.
There is growing evidence of the active involvement of sleep in memory consolidation. Besides hippocampal sharp wave-ripple complexes and sleep spindles, slow oscillations appear to play a key role in the process of sleep-associated memory consolidation. Furthermore, slow oscillation amplitude and spectral power increase during the night after learning declarative and procedural memory tasks. However, it is unresolved whether learning-induced changes specifically alter characteristics of individual slow oscillations, such as the slow oscillation up-state length and amplitude, which are believed to be important for neuronal replay. 24 subjects (12 men) aged between 20 and 30 years participated in a randomized, within-subject, multicenter study. Subjects slept on three occasions for a whole night in the sleep laboratory with full polysomnography. Whereas the first night only served for adaptation purposes, the two remaining nights were preceded by a declarative word-pair task or by a non-learning control task. Slow oscillations were detected in non-rapid eye movement sleep over electrode Fz. Results indicate positive correlations between the length of the up-state as well as the amplitude of both slow oscillation phases and changes in memory performance from pre to post sleep. We speculate that the prolonged slow oscillation up-state length might extend the timeframe for the transfer of initial hippocampal to long-term cortical memory representations, whereas the increase in slow oscillation amplitudes possibly reflects changes in the net synaptic strength of cortical networks.  相似文献   
7.
BACKGROUND: The Laser Scanning Cytometry (LSC) offers quantitative fluorescence analysis of cell suspensions and tissue sections. METHODS: We adapted this technique to immunohistochemical labelled human brain slices. RESULTS: We were able to identify neurons according to their labelling and to display morphological structures such as the lamination of the entorhinal cortex. Further, we were able to distinguish between neurons with and without cyclin B1 expression and we could assign the expression of cyclin B1 to the cell islands of layer II and the pyramidal neurons of layer V of the entorhinal cortex in Alzheimer's disease effected brain. In addition, we developed a method depicting the three-dimensional distribution of the cells in intact tissue sections. CONCLUSIONS: In this pilot experiments we could demonstrate the power of the LSC for the analysis of human brain sections.  相似文献   
8.
9.
Allicin, a broad‐spectrum antimicrobial agent from garlic, disrupts thiol and redox homeostasis, proteostasis, and cell membrane integrity. Since medicine demands antimicrobials with so far unexploited mechanisms, allicin is a promising lead structure. While progress is being made in unraveling its mode of action, little is known on bacterial adaptation strategies. Some isolates of Pseudomonas aeruginosa and Escherichia coli withstand exposure to high allicin concentrations due to as yet unknown mechanisms. To elucidate resistance and sensitivity‐conferring cellular processes, the acute proteomic responses of a resistant P. aeruginosa strain and the sensitive species Bacillus subtilis are compared to the published proteomic response of E. coli to allicin treatment. The cellular defense strategies share functional features: proteins involved in translation and maintenance of protein quality, redox homeostasis, and cell envelope modification are upregulated. In both Gram‐negative species, protein synthesis of the majority of proteins is downregulated while the Gram‐positive B. subtilis responded by upregulation of multiple regulons. A comparison of the B. subtilis proteomic response to a library of responses to antibiotic treatment reveals 30 proteins specifically upregulated by allicin. Upregulated oxidative stress proteins are shared with nitrofurantoin and diamide. Microscopy‐based assays further indicate that in B. subtilis cell wall integrity is impaired.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号