首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5170篇
  免费   486篇
  5656篇
  2023年   22篇
  2022年   52篇
  2021年   89篇
  2020年   61篇
  2019年   63篇
  2018年   83篇
  2017年   85篇
  2016年   124篇
  2015年   225篇
  2014年   275篇
  2013年   343篇
  2012年   431篇
  2011年   430篇
  2010年   305篇
  2009年   267篇
  2008年   361篇
  2007年   364篇
  2006年   339篇
  2005年   311篇
  2004年   292篇
  2003年   273篇
  2002年   245篇
  2001年   40篇
  2000年   39篇
  1999年   59篇
  1998年   83篇
  1997年   34篇
  1996年   51篇
  1995年   45篇
  1994年   50篇
  1993年   34篇
  1992年   25篇
  1991年   13篇
  1990年   15篇
  1989年   18篇
  1988年   10篇
  1987年   12篇
  1986年   6篇
  1985年   4篇
  1984年   7篇
  1983年   9篇
  1982年   6篇
  1981年   9篇
  1980年   5篇
  1979年   6篇
  1978年   7篇
  1977年   13篇
  1976年   7篇
  1975年   2篇
  1974年   3篇
排序方式: 共有5656条查询结果,搜索用时 15 毫秒
1.
In this study, 18 partly commercially available samples of rock salt from Austria, Germany, Pakistan, Poland, Switzerland, and Ukraine were investigated with respect to their content of trace elements using instrumental neutron activation analysis. Elements detected were Al, Ba, Br, Ca, Ce, Cl, Co, Cr, Cs, Eu, Fe, Hf, La, Mn, Na, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, and Zn, some of them only in individual cases. An estimation of the bioavailability of these trace elements was performed by dissolving an equivalent of the sodium chloride samples in diluted hydrochloric acid (simulating stomach acid), filtering off the insoluble components, and analyzing the evaporated filtrate. It could be shown that in most cases bioactive trace elements like Fe can be found in rock salt in the form of almost insoluble compounds and are therefore not significantly bioavailable, whereas thorium, for example, was partly bioavailable in two cases. A significant contribution to the recommended daily intake of metal trace elements by using rock salt for nutrition can be excluded.  相似文献   
2.
The cellular retinoic acid binding protein is thought to be involved in the retinoic-acid-mediated signal transduction pathway. We have isolated the mouse cellular retinoic acid binding protein cDNA from an embryonal-carcinoma-derived cell line by using differential cDNA cloning strategies. In situ hybridization on sections of mouse embryos of various developmental stages indicated that the cellular retinoic acid binding protein gene, which we localized on mouse chromosome 9, is preferentially expressed in a subpopulation of neurectodermal cells. This restricted expression pattern suggests an important role for cellular retinoic acid binding protein in murine neurogenesis.  相似文献   
3.
Molecular Genetics and Genomics - Plant ferredoxin is a nuclear-encoded chloroplast protein that is synthesized in the cytoplasm as a transit peptide-containing precursor molecule. To identify...  相似文献   
4.
5.
6.
Lolium perenne growing with high root density on a fine nylon mesh (Kuchenbuch and Jungk, 1982) caused the development of element gradients in the rhizosphere below the mesh. Micro-liter soil solutions from 2-mg soil samples were sprayed onto Formvar-coated grids and analyzed by X-ray microanalysis in a transmission electron microscope. The results were comparable to those obtained by flame photometry and atomic absorption spectrometry (AAS) of conventional soil solutions from 1 g soil. X-ray microanalysis of micro-soil solutions allows the application of different extraction procedures to even small amounts of soil usually available from rhizosphere experiments. Information about soil buffering characteristics in the rhizosphere can thus be obtained. Aluminum accumulation in the rhizosphere of small segments of single Picea abies fine roots grown in undisturbed natural forest soil could be detected with this technique.  相似文献   
7.
Sulfur plays an important role in plants, being used for the biosynthesis of amino acids, sulfolipids and secondary metabolites. After uptake sulfate is activated and subsequently reduced to sulfide or serves as donor for sulfurylation reactions. The first step in the activation of sulfate in all cases studied so far is catalyzed by the enzyme ATP-sulfurylase (E.C. 2.7.7.4.) which catalyzes the formation of adenosine-5′-phosphosulfate (APS). Two cDNA clones from potato encoding ATP-sulfurylases were identified following transformation of a Saccharomyces cerevisiae mutant deficient in ATP-sulfurylase activity with a cDNA library from potato source leaf poly(A)+ RNA cloned in a yeast expression vector. Several transformants were able to grow on a medium with sulfate as the only sulfur source, this ability being strictly linked to the presence of two classes of cDNAs. The clones StMet3-1 and StMet3-2 were further analyzed. DNA analysis revealed an open reading frame encoding a protein with a molecular mass of 48 kDa in the case of StMet3-1 and 52 kDa for StMet3-2. The deduced polypeptides are 88% identical at the amino acid level. The clone StMet3-2 has a 48 amino acid N-terminal extension which shows common features of a chloroplast transit peptide. Sequence comparison of the ATP-sulfurylase Met3 from Saccharomyces cerevisiae with the cDNA StMet3-1 (StMet3-2) reveals 31% (30%) identity at the amino acid level. Protein extracts from the yeast mutant transformed with the clone StMet3-1 displayed ATP-sulfurylase activity. RNA blot analysis demonstrated the expression of both genes in potato leaves, root and stem, but not in tubers. To the best of the authors' knowledge this is the first cloning and identification of genes involved in the reductive sulfate assimilation pathway from higher plants.  相似文献   
8.
The variable-temperature proton nmr spectra of the oligoribonucleotides in the series CpApX and the series ApGpX, X = A, G, C, U, together with the parent dimers CpA and ApG have been measured. A complete analysis of all the nonexchangeable base proton resonances and ribose H-1′ proton resonances was made. The presence of trends in the shielding abilities of the various bases at both the nearest-neighbor and next-nearest-neighbor positions were identified. The observed shieldings could be used to predict the chemical shifts of protons in related systems. Based on the empirical results from ribodinucleoside monophosphates, the temperature-dependent behavior of the J1′2′ coupling constants of the triribonucleotides suggested that the compounds in the CpApX series stacked from the 5′-end to the 3′-end, while those in the ApGpX series stacked from the 3′-end to the 5′-end.  相似文献   
9.
The most probable secondary structure of an RNA molecule, given the nucleotide sequence, can be computed efficiently if a stochastic context-free grammar (SCFG) is used as the prior distribution of the secondary structure. The structures of some RNA molecules contain so-called pseudoknots. Allowing all possible configurations of pseudoknots is not compatible with context-free grammar models and makes the search for an optimal secondary structure NP-complete. We suggest a probabilistic model for RNA secondary structures with pseudoknots and present a Markov-chain Monte-Carlo Method for sampling RNA structures according to their posterior distribution for a given sequence. We favor Bayesian sampling over optimization methods in this context, because it makes the uncertainty of RNA structure predictions assessable. We demonstrate the benefit of our method in examples with tmRNA and also with simulated data. McQFold, an implementation of our method, is freely available from http://www.cs.uni-frankfurt.de/~metzler/McQFold.  相似文献   
10.
In bright sunlight photosynthetic activity is limited by the enzymatic machinery of carbon dioxide assimilation. This supererogation of energy can be easily visualized by the significant increases of photosynthetic activity under high CO2 conditions or other metabolic strategies which can increase the carbon flux from CO2 to metabolic pools. However, even under optimal CO2 conditions plants will provide much more NADPH + H+ and ATP that are required for the actual demand, yielding in a metabolic situation, in which no reducible NADP+ would be available. As a consequence, excited chlorophylls can activate oxygen to its singlet state or the photosynthetic electrons can be transferred to oxygen, producing highly active oxygen species such as the superoxide anion, hydroxyl radicals and hydrogen peroxide. All of them can initiate radical chain reactions which degrade proteins, pigments, lipids and nucleotides. Therefore, the plants have developed protection and repair mechanism to prevent photodamage and to maintain the physiological integrity of metabolic apparatus. The first protection wall is regulatory energy dissipation on the level of the photosynthetic primary reactions by the so-called non-photochemical quenching. This dissipative pathway is under the control of the proton gradient generated by the electron flow and the xanthophyll cycle. A second protection mechanism is the effective re-oxidation of the reduction equivalents by so-called “alternative electron cycling” which includes the water-water cycle, the photorespiration, the malate valve and the action of antioxidants. The third system of defence is the repair of damaged components. Therefore, plants do not suffer from energy shortage, but instead they have to invest in proteins and cellular components which protect the plants from potential damage by the supererogation of energy. Under this premise, our understanding and evaluation for certain energy dissipating processes such as non-photochemical quenching or photorespiration appear in a quite new perspective, especially when discussing strategies to improve the solar energy conversion into plant biomass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号