全文获取类型
收费全文 | 690篇 |
免费 | 59篇 |
专业分类
749篇 |
出版年
2022年 | 13篇 |
2021年 | 16篇 |
2020年 | 8篇 |
2019年 | 14篇 |
2018年 | 20篇 |
2017年 | 13篇 |
2016年 | 17篇 |
2015年 | 33篇 |
2014年 | 46篇 |
2013年 | 49篇 |
2012年 | 58篇 |
2011年 | 53篇 |
2010年 | 29篇 |
2009年 | 28篇 |
2008年 | 24篇 |
2007年 | 34篇 |
2006年 | 31篇 |
2005年 | 31篇 |
2004年 | 20篇 |
2003年 | 28篇 |
2002年 | 20篇 |
2001年 | 7篇 |
2000年 | 6篇 |
1999年 | 5篇 |
1996年 | 5篇 |
1995年 | 5篇 |
1993年 | 3篇 |
1992年 | 3篇 |
1991年 | 9篇 |
1990年 | 6篇 |
1989年 | 9篇 |
1988年 | 3篇 |
1987年 | 12篇 |
1986年 | 6篇 |
1985年 | 6篇 |
1984年 | 5篇 |
1983年 | 4篇 |
1982年 | 3篇 |
1981年 | 3篇 |
1980年 | 6篇 |
1979年 | 6篇 |
1974年 | 6篇 |
1973年 | 4篇 |
1972年 | 4篇 |
1971年 | 4篇 |
1970年 | 3篇 |
1969年 | 3篇 |
1968年 | 4篇 |
1967年 | 3篇 |
1966年 | 3篇 |
排序方式: 共有749条查询结果,搜索用时 16 毫秒
1.
U Pande G N La Mar J T Lecomte F Ascoli M Brunori K M Smith R K Pandey D W Parish V Thanabal 《Biochemistry》1986,25(19):5638-5646
The 1H NMR characteristics of the high-spin metmyoglobin from the mollusc Aplysia limacina have been investigated and compared with those of the myoglobin (Mb) from sperm whale. Aplysia metMb exhibits a normal acid----alkaline transition with pK approximately 7.8. In the acidic form, the heme methyl and meso proton resonances have been assigned by 1H NMR using samples reconstituted with selectively deuterated hemins and in the latter case by 2H NMR as well. On the basis of the methyl peak intensities and shift pattern, heme rotational disorder could be established in Aplysia Mb; approximately 20% of the protein exhibits a reversed heme orientation compared to that found in single crystals. Three meso proton resonances have been detected in the upfield region between -16 and -35 ppm, showing that the chemical shift of such protons can serve as a diagnostic probe for a pentacoordinated active site in hemoproteins, as previously shown to be the case in model compounds. The temperature dependence of the chemical shift of the meso proton signals deviates strongly from the T-1 Curie behavior, reflecting the presence of a thermally accessible Kramers doublet with significant S = 3/2 character. Nuclear Overhauser effect, NOE, measurements on Aplysia metMb have provided the assignment of individual heme alpha-propionate resonances and were used to infer spatial proximity among heme side chains. The hyperfine shift values for assigned resonances, the NOE connectivities, and the NOE magnitudes were combined to reach a qualitative picture of the rotational mobility and the orientation of the vinyl and propionate side chains of Aplysia metMb relative to sperm whale MbH2O.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
2.
3.
Inhibition of calcium ATPase by phencyclidine in rat brain 总被引:2,自引:0,他引:2
Pande M. Cameron J.A. Vig P.J.S. Ali S.F. Desaiah D. 《Molecular and cellular biochemistry》1999,194(1-2):173-177
Phencyclidine (PCP) is a potent psychotomimetic drug of abuse and has profound effect on the functioning of the central nervous system (CNS). Many of the CNS functions are known to be mediated by calcium (Ca2+). In the present study we have investigated the effects of PCP on Ca2+ ATPase activity in rat brain both in vitro and in vivo. For in vitro studies, synaptic membrane fractions prepared from normal rat brain were incubated with PCP at different concentrations (25-100 M) before the addition of substrate. For n vivo studies, rats were treated with a single moderate dose of PCP (10 mg/kg, IP) and animals were sacrificed at 1,2, 6 and 12 h after treatment. Ca2+ ATPase activity in synaptic membrane fractions was assayed by estimation of inorganic phosphate. PCP inhibited the Ca2+ ATPase in vitro in a concentration dependent manner with significant effect at 50 and 100 M. A significant time-dependent reduction of the Ca2+ ATPase activity was evident in vivo. As early as 2 h after the treatment of rats with PCP the ATPase activity was significantly reduced. The reduction of Ca2+ ATPase observed even at 12 h after treatment suggesting a prolonged presence of the drug in the brain tissue. Further, kinetic studies in vitro indicated PCP to be a competitive inhibitor of Ca2+ ATPase with respect to the substrate, ATP. The present findings indicate that PCP inhibits synaptic membrane Ca2+ ATPase thus altering cellular Ca2+ homeostasis in CNS which may partially explain the pharmacological effects of the drug and/or its neurotoxicity. 相似文献
4.
Vinayak Singh Namita Singh Chauhan Mohit Singh Asif Idris Raju Madanala Veena Pande Chandra Sekhar Mohanty 《Plant signaling & behavior》2014,9(10)
An in vitro method of multiple shoot induction and plant regeneration in Psophocarpus tetragonolobus (L.) DC was developed. Cotyledons, hypocotyls, epicotyls, internodal and young seedling leaves were used as explants. MS media supplemented with various concentrations of either thidiazuron (TDZ) or N6-benzylaminopurine (BAP) along with NAA or IAA combinations were used to determine their influence on multiple shoot induction. MS media supplemented with TDZ induced direct shoot regeneration when epicotyls and internodal segments were used as explants. TDZ at 3 mg L−1 induced highest rate (89.2 ± 3.28%) of regeneration with (13.4 ± 2.04) shoots per explant. MS media supplemented with BAP in combination with NAA or IAA induced callus mediated regeneration when cotyledons and hypocotyls were used as explants. BAP (2.5 mg L−1) and IAA (0.2 mg L−1) induced highest rate (100 ± 2.66%) of regeneration with (23.2 ± 2.66) shoots per explant. Mature plants produced from regenerated shoots were transferred successfully to the greenhouse. In a comparative study, the phenolics contents of various parts of greenhouse-grown plants with that of in vitro-raised plants showed significant variations. 相似文献
5.
Aditya Sharma Chandan K. Maurya Deepti Arha Amit K. Rai Sushmita Singh Salil Varshney Jonathan D. Schertzer Akhilesh K. Tamrakar 《生物化学与生物物理学报:疾病的分子基础》2019,1865(1):136-146
Chronic inflammation contributes to obesity mediated metabolic disturbances, including insulin resistance. Obesity is associated with altered microbial load in metabolic tissues that can contribute to metabolic inflammation. Different bacterial components such as, LPS, peptidoglycans have been shown to underpin metabolic disturbances through interaction with host innate immune receptors. Activation of Nucleotide-binding oligomerization domain-containing protein 1 (Nod1) with specific peptidoglycan moieties promotes insulin resistance, inflammation and lipolysis in adipocytes. However, it was not clear how Nod1-mediated lipolysis and inflammation is linked. Here, we tested if Nod1-mediated lipolysis caused accumulation of lipid intermediates and promoted cell autonomous inflammation in adipocytes. We showed that Nod1-mediated lipolysis caused accumulation of diacylglycerol (DAG) and activation of PKCδ in 3T3-L1 adipocytes, which was prevented with a Nod1 inhibitor. Nod1-activated PKCδ caused downstream stimulation of IRAK1/4 and was associated with increased expression of proinflammatory cytokines such as, IL-1β, IL-18, IL-6, TNFα and MCP-1. Pharmacological inhibition or siRNA mediated knockdown of IRAK1/4 attenuated Nod1-mediated activation of NF-κB, JNK, and the expression of proinflammatory cytokines. These results reveal that Nod1-mediated lipolysis promoted accumulation of DAG, which engaged PKCδ and IRAK1/4 to augment inflammation in 3T3-L1 adipocytes. 相似文献
6.
The sliding β-clamp, an important component of the DNA replication and repair machinery, is drawing increasing attention as a therapeutic target. We report the crystal structure of the M. tuberculosis β-clamp (Mtbβ-clamp) to 3.0 Å resolution. The protein crystallized in the space group C2221 with cell-dimensions a = 72.7, b = 234.9 & c = 125.1 Å respectively. Mtbβ-clamp is a dimer, and exhibits head-to-tail association similar to other bacterial clamps. Each monomer folds into three domains with similar structures respectively and associates with its dimeric partner through 6 salt-bridges and about 21 polar interactions. Affinity experiments involving a blunt DNA duplex, primed-DNA and nicked DNA respectively show that Mtbβ-clamp binds specifically to primed DNA about 1.8 times stronger compared to the other two substrates and with an apparent Kd of 300 nM. In bacteria like E. coli, the β-clamp is known to interact with subunits of the clamp loader, NAD+ -dependent DNA ligase (LigA) and other partners. We tested the interactions of the Mtbβ-clamp with MtbLigA and the γ-clamp loader subunit through radioactive gel shift assays, size exclusion chromatography, yeast-two hybrid experiments and also functionally. Intriguingly while Mtbβ-clamp interacts in vitro with the γ-clamp loader, it does not interact with MtbLigA unlike in bacteria like E. coli where it does. Modeling studies involving earlier peptide complexes reveal that the peptide-binding site is largely conserved despite lower sequence identity between bacterial clamps. Overall the results suggest that other as-yet-unidentified factors may mediate interactions between the clamp, LigA and DNA in mycobacteria. 相似文献
7.
Ostanin DV Barlow S Shukla D Grisham MB 《Biochemical and biophysical research communications》2007,355(3):801-806
The adaptive immune system plays an important role in host defense against invading micro-organisms. Yet, mice deficient in T- and B-cells are surprisingly healthy and develop few spontaneous infections when raised under specific pathogen-free conditions (SPF). The objective of this study was to ascertain what role phagocyte-associated NADPH oxidase or myeloperoxidase (MPO) plays in host defense in mice lacking both T- and B-cells. To do this, we generated lymphopenic mice deficient in either NADPH oxidase or MPO by crossing gp91(phox)-deficient (gp91 ko) or MPO ko mice with mice deficient in recombinase activating gene-1 (RAG ko). We found that neither gp91 ko, MPO ko mice nor lymphocyte-deficient RAG ko mice developed spontaneous infections when raised under SPF conditions and all mice had life spans similar to wild-type (WT) animals. In contrast, gp91xRAG double-deficient (DKO) but not MPOxRAG DKO mice developed spontaneous multi-organ bacterial and fungal infections early in life and lived only a few months. Infections in the gp91xRAG DKO mice were characterized by granulomatous inflammation of the skin, liver, heart, brain, kidney, and lung. Addition of antibiotics to the drinking water attenuated the spontaneous infections and increased survival of the mice. Oyster glycogen-elicited polymorphonuclear neutrophils (PMNs) and macrophages obtained from gp91 ko and gp91xRAG DKO mice had no detectable NADPH oxidase activity whereas WT, RAG ko, and MPOxRAG DKO PMNs and macrophages produced large and similar amounts of superoxide in response to phorbol myristate acetate. The enhanced mortality of the gp91xRAG DKO mice was not due to defects in inflammatory cell recruitment or NO synthase activity (iNOS) as total numbers of elicited PMNs and macrophages as well as PMN- and macrophage-derived production of nitric oxide-derived metabolites in these mice were similar and not reduced when compared to that of WT mice. Taken together, our data suggest that that NADPH oxidase but not MPO (nor iNOS) is required for host defense in lymphopenic mice and that lymphocytes and NADPH oxidase may compensate for each other's deficiency in providing resistance to spontaneous bacterial infections. 相似文献
8.
Deepti Singh Priyanka Gupta Sneh Lata Singla-Pareek Kadambot H.M. Siddique Ashwani Pareek 《Current Genomics》2021,22(1):59
BackgroundThe two-component signaling (TCS) system is an important signal transduction machinery in prokaryotes and eukaryotes, excluding animals, that uses a protein phosphorylation mechanism for signal transmission.ConclusionProkaryotes have a primitive type of TCS machinery, which mainly comprises a membrane-bound sensory histidine kinase (HK) and its cognate cytoplasmic response regulator (RR). Hence, it is sometimes referred to as two-step phosphorelay (TSP). Eukaryotes have more sophisticated signaling machinery, with an extra component - a histidine-containing phosphotransfer (HPT) protein that shuttles between HK and RR to communicate signal baggage. As a result, the TSP has evolved from a two-step phosphorelay (His–Asp) in simple prokaryotes to a multi-step phosphorelay (MSP) cascade (His–Asp–His–Asp) in complex eukaryotic organisms, such as plants, to mediate the signaling network. This molecular evolution is also reflected in the form of considerable structural modifications in the domain architecture of the individual components of the TCS system. In this review, we present TCS system''s evolutionary journey from the primitive TSP to advanced MSP type across the genera. This information will be highly useful in designing the future strategies of crop improvement based on the individual members of the TCS machinery. 相似文献
9.
The relative folding rates of simple, single-domain proteins, proteins whose folding energy landscapes are smooth, are highly dispersed and strongly correlated with native-state topology. In contrast, the relative folding rates of small, Gō-potential lattice polymers, which also exhibit smooth energy landscapes, are poorly dispersed and insignificantly correlated with native-state topology. Here, we investigate this discrepancy in light of a recent, quantitative theory of two-state folding kinetics, the topomer search model. This model stipulates that the topology-dependence of two-state folding rates is a direct consequence of the extraordinarily cooperative equilibrium folding of simple proteins. We demonstrate that traditional Gō polymers lack the extreme cooperativity that characterizes the folding of naturally occurring, two-state proteins and confirm that the folding rates of a diverse set of Gō 27-mers are poorly dispersed and effectively uncorrelated with native state topology. Upon modestly increasing the cooperativity of the Gō-potential, however, significantly increased dispersion and strongly topology-dependent kinetics are observed. These results support previous arguments that the cooperative folding of simple, single-domain proteins gives rise to their topology-dependent folding rates. We speculate that this cooperativity, and thus, indirectly, the topology-rate relationship, may have arisen in order to generate the smooth energetic landscapes upon which rapid folding can occur. 相似文献
10.
Developing an understanding of protein misfolding processes presents a crucial challenge for unlocking the mysteries of human disease. In this article, we present our observations of β-sheet-rich misfolded states on a number of protein dynamical landscapes investigated through molecular dynamics simulation and Markov state models. We employ a nonequilibrium statistical mechanical theory to identify the glassy states in a protein’s dynamics, and we discuss the nonnative, β-sheet-rich states that play a distinct role in the slowest dynamics within seven protein folding systems. We highlight the fundamental similarity between these states and the amyloid structures responsible for many neurodegenerative diseases, and we discuss potential consequences for mechanisms of protein aggregation and intermolecular amyloid formation. 相似文献