全文获取类型
收费全文 | 173篇 |
免费 | 10篇 |
专业分类
183篇 |
出版年
2023年 | 1篇 |
2022年 | 3篇 |
2021年 | 4篇 |
2020年 | 1篇 |
2019年 | 1篇 |
2018年 | 1篇 |
2017年 | 2篇 |
2016年 | 2篇 |
2015年 | 7篇 |
2014年 | 10篇 |
2013年 | 9篇 |
2012年 | 15篇 |
2011年 | 7篇 |
2010年 | 4篇 |
2009年 | 7篇 |
2008年 | 20篇 |
2007年 | 11篇 |
2006年 | 12篇 |
2005年 | 12篇 |
2004年 | 11篇 |
2003年 | 8篇 |
2002年 | 11篇 |
2001年 | 2篇 |
1999年 | 2篇 |
1998年 | 3篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1994年 | 2篇 |
1993年 | 2篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1990年 | 2篇 |
1989年 | 1篇 |
1985年 | 1篇 |
1983年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1978年 | 1篇 |
排序方式: 共有183条查询结果,搜索用时 15 毫秒
1.
2.
Summary Intra-ocular deposition of horseradish peroxidase was used to visualize optic tract projections in normal and congenitally monophthalmic catfish and Xenopus. In neither species was evidence for an increased ipsilateral visual component found in congenitally one-eyed specimens. This indicates that competition between axons from both eyes is not an important mechanism for fiber distribution in the chiasm during ontogeny. Furthermore, it suggests that enhanced ipsilateral components, previously noted in unilaterally enucleated fish and anurans, are caused by debris of degenerated axons. 相似文献
3.
Intracellular trafficking is a vital component of both virulence mechanisms and drug interactions in Trypanosoma brucei, the causative agent of human African trypanosomiasis and n''agana of cattle. Both maintaining the surface proteome composition within a life stage and remodeling the composition when progressing between life stages are important features of immune evasion and development for trypanosomes. Our recent work implicates the abundant transmembrane invariant surface glycoproteins (ISGs) in the uptake of first-line therapeutic suramin, suggesting a potential therapeutic route into the cell. RME-8 is a mediator of recycling pathways in higher eukaryotes and is one of a small cohort of intracellular transport gene products upregulated in mammal-infective trypanosomes, suggesting a role in controlling the copy number of surface proteins in trypanosomes. Here we investigate RME-8 function and its contribution to intracellular trafficking and stability of ISGs. RME-8 is a highly conserved protein and is broadly distributed across multiple endocytic compartments. By knockdown we find that RME-8 is essential and mediates delivery of endocytic probes to late endosomal compartments. Further, we find ISG accumulation within endosomes, but that RME-8 knockdown also increases ISG turnover; combined with previous data, this suggests that it is most probable that ISGs are recycled, and that RME-8 is required to support recycling. 相似文献
4.
5.
End C Lyer S Renner M Stahl C Ditzer J Holloschi A Kuhn HM Flammann HT Poustka A Hafner M Mollenhauer J Kioschis P 《Protein expression and purification》2005,41(2):275-286
Deleted in malignant brain tumours 1 (DMBT1) codes for a approximately 340kDa glycoprotein with highly repetitive scavenger receptor cysteine-rich (SRCR) domains. DMBT1 was implicated in cancer, defence against viral and bacterial infections, and differentiation of epithelial cells. Recombinant expression and purification of DMBT1 is an essential step for systematic standardized functional research and towards the evaluation of its therapeutical potential. So far, DMBT1 is obtained from natural sources such as bronchioalveolar lavage or saliva, resulting in time consuming sample collection, low yields, and protein preparations which may substantially vary due to differential processing and genetic polymorphism, all of which impedes functional research on DMBT1. Cloning of DMBT1 cDNAs is hampered because of the size and the 13 highly homologous SRCR exons. In this study, we report on the setup of a vector system that facilitates cloning of DMBT1 variants. We demonstrate applicability of the vector system by expression of the largest DMBT1 variant in a tetracycline-inducible mammalian expression system using the Chinese hamster ovary cell line. Yields up to 30 mg rDMBT1 per litre of cell culture supernatant could be achieved with an optimized production procedure. By harnessing the specific bacteria-binding property of DMBT1 we established an affinity purification procedure which allows the isolation of more than 3 mg rDMBT1 with a purity of about 95%. Although the glycosylation moieties of rDMBT1 are different from DMBT1(SAG) isolated from saliva, we demonstrate that rDMBT1 is functionally active in aggregating Gram-positive and Gram-negative bacteria and binding to C1q and lactoferrin, which represent two known endogenous DMBT1 ligands. 相似文献
6.
Mueller M Stamme C Draing C Hartung T Seydel U Schromm AB 《The Journal of biological chemistry》2006,281(42):31448-31456
Lipoteichoic acid (LTA) represents immunostimulatory molecules expressed by Gram-positive bacteria. They activate the innate immune system via Toll-like receptors. We have investigated the role of serum proteins in activation of human macrophages by LTA from Staphylococcus aureus and found it to be strongly attenuated by serum. In contrast, the same cells showed a sensitive response to LTA and a significantly enhanced production of tumor necrosis factor alpha under serum-free conditions. We show that LTA interacts with the serum protein lipopolysaccharide-binding protein (LBP) and inhibits the integration of LBP into phospholipid membranes, indicating the formation of complexes of LTA and soluble LBP. The addition of recombinant human LBP to serum-free medium inhibited the production of tumor necrosis factor alpha and interleukins 6 and 8 after stimulation of human macrophages with LTA in a dose-dependent manner. Using anti-LBP antibodies, this inhibitory effect could be attributed to soluble LBP, whereas LBP in its recently described transmembrane configuration did not modulate cell activation. Also, using primary alveolar macrophages from rats, we show a sensitive cytokine response to LTA under serum-free culture conditions that was strongly attenuated in the presence of serum. In summary, our data suggest that innate immune recognition of LTA is organ-specific with negative regulation by LBP in serum-containing compartments and sensitive recognition in serum-free compartments like the lung. 相似文献
7.
Maria Nurminskaya Cordula Magee Dmitry Nurminsky Thomas F. Linsenmayer 《The Journal of cell biology》1998,142(4):1135-1144
We previously used subtractive hybridization to isolate cDNAs for genes upregulated in chick hypertrophic chondrocytes (Nurminskaya, M., and T.F. Linsenmayer. 1996. Dev. Dyn. 206:260–271). Certain of these showed homology with the “A” subunit of human plasma transglutaminase (factor XIIIA), a member of a family of enzymes that cross-link a variety of intracellular and matrix molecules. We now have isolated a full-length cDNA for this molecule, and confirmed that it is avian factor XIIIA. Northern and enzymatic analyses confirm that the molecule is upregulated in hypertrophic chondrocytes (as much as eightfold). The enzymatic analyses also show that appreciable transglutaminase activity in the hypertrophic zone becomes externalized into the extracellular matrix. This externalization most likely is effected by cell death and subsequent lysis—effected by the transglutaminase itself. When hypertrophic chondrocytes are transfected with a cDNA construct encoding the zymogen of factor XIIIA, the cells convert the translated protein to a lower molecular weight form, and they initiate cell death, become permeable to macromolecules and eventually undergo lysis. Non-hypertrophic cells transfected with the same construct do not show these degenerative changes. These results suggest that hypertrophic chondrocytes have a novel, tissue-specific cascade of mechanisms that upregulate the synthesis of plasma transglutaminase and activate its zymogen. This produces autocatalytic cell death, externalization of the enzyme, and presumably cross-linking of components within the hypertrophic matrix. These changes may in turn regulate the removal and/or calcification of this hypertrophic matrix, which are its ultimate fates. 相似文献
8.
Vicki Waetzig Wiebke Haeusgen Cordula Andres Sonja Frehse Kirstin Reinecke Henrike Bruckmueller Ruwen Boehm Thomas Herdegen Ingolf Cascorbi 《Journal of cellular biochemistry》2019,120(4):5974-5986
Neuroblastoma is a malignant childhood cancer arising from the embryonic sympathoadrenal lineage of the neural crest. Retinoic acid (RA) is included in the multimodal therapy of patients with high-risk neuroblastoma to eliminate minimal residual disease. However, the formation of RA-resistant cells substantially lowers 5-year overall survival rates. To examine mechanisms that lead to treatment failure, we chose human SH-SY5Y cells, which are known to tolerate incubation with RA by activating the survival kinases Akt and extracellular signal-regulated kinase 1/2. Characterization of downstream pathways showed that both kinases increased the phosphorylation of the ubiquitin ligase mouse double minute homolog 2 (Mdm2) and thereby enhanced p53 degradation. When p53 signaling was sustained by blocking complex formation with Mdm2 or enhancing c-Jun N-terminal kinase (JNK) activation, cell viability was significantly reduced. In addition, Akt-mediated phosphorylation of the cell-cycle regulator p21 stimulated complex formation with caspase-3, which also contributed to cell protection. Thus, treatment with RA augmented survival signaling and attenuated basal apoptotic pathways in SH-SY5Y cells, which increased cell viability. 相似文献
9.
Blm10 is bound to the yeast proteasome core particle, a crucial protease of eukaryotic cells [corrected]. Two gates, at both ends of the CP, control the access of protein substrates to the catalytic cavity of the CP. Normally, substrate access is auto-inhibited by a closed gate conformation unless regulatory complexes are bound to the CP and translocate protein substrates in an ATP-dependent manner. Here, we provide evidence that Blm10 recognizes pre-activated open gate CPs, which are assumed to exist in an equilibrium with inactive closed gate CP. Consequently, single-capped Blm10-CP shows peptide hydrolysis activity. Under conditions of disturbed CP assembly, as well as in open gate mutants, pre-activated CP or constitutively active CP, respectively, prevail. Then, Blm10 sequesters disordered and open gate CP by forming double-capped Blm10(2)-CP in which peptide hydrolysis activity is repressed. We conclude that Blm10 distinguishes between gate conformations and regulates the activation of CP. 相似文献
10.
Cordula I. Jörgens Nora Grünewald Martin Hülskamp Joachim F. Uhrig 《The Plant journal : for cell and molecular biology》2010,62(6):925-935
Actin nucleation facilitated by the ARP2/3 complex plays a central role in plant cell shape development. The molecular characterization of the distorted class of trichome mutants has recently revealed the SCAR/WAVE complex as an essential upstream activator of ARP2/3 function in plants. The SCAR/WAVE complex is conserved from animals to plants and, generally, is composed of the five subunits SCAR/WAVE, PIR121, NAP125, BRICK and ABI. In plants, four of the five subunits have been shown to participate in trichome and pavement morphogenesis. Plant ABI‐like proteins (ABIL), however, which constitute a small four‐member protein family in Arabidopsis thaliana, have not been characterized functionally, so far. Here we demonstrate that microRNA knock‐down of the ABIL3 gene leads to a distorted trichome phenotype reminiscent of ARP2/3 mutant phenotypes and consistent with a crucial role of the ABIL3 protein in an ARP2/3‐activating SCAR/WAVE complex. In contrast to ARP2/3 mutants, however, the ABIL3 knock‐down stimulated cell elongation in the root, indicating distinct functions of the ABIL3 protein in different tissues. Furthermore, we provide evidence that ABIL3 associates with microtubules in vivo, opening up the intriguing possibility that ABI‐like proteins have a function in linking SCAR/WAVE‐dependent actin nucleation with organization of the microtubule cytoskeleton. 相似文献