首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   774篇
  免费   55篇
  国内免费   1篇
  830篇
  2024年   1篇
  2023年   1篇
  2022年   9篇
  2021年   20篇
  2020年   11篇
  2019年   6篇
  2018年   16篇
  2017年   11篇
  2016年   18篇
  2015年   42篇
  2014年   58篇
  2013年   55篇
  2012年   65篇
  2011年   71篇
  2010年   37篇
  2009年   30篇
  2008年   45篇
  2007年   59篇
  2006年   35篇
  2005年   31篇
  2004年   27篇
  2003年   30篇
  2002年   22篇
  2001年   22篇
  2000年   21篇
  1999年   16篇
  1998年   8篇
  1997年   10篇
  1996年   5篇
  1995年   5篇
  1994年   4篇
  1993年   3篇
  1992年   6篇
  1991年   6篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1973年   1篇
  1972年   2篇
  1968年   2篇
  1966年   3篇
排序方式: 共有830条查询结果,搜索用时 0 毫秒
1.
In a study of the effect of glycerin in transport media on Vibrio parahaemolyticus and Salmonella, it was found that a concentration of 30% glycerin was highly inhibitory for V. parahaemolyticus and to a lesser degree for Salmonella. The incorporation of peptone or human feces in media did not reduce the inhibitory effect of glycerin. In media with 15% glycerin, viable counts of V. parahaemolyticus and Salmonella increased after 24 hr of incubation both in the presence and absence of feces. Due to the concurrent increase in the total bacterial count in the media containing feces, no enrichment effect was noted.  相似文献   
2.
3.
Cell adhesion molecules play a crucial role in fundamental biological processes via regulating cell–cell interactions. Nerve injury induced protein1 (Ninjurin1) is a novel adhesion protein that has no significant homology with other known cell adhesion molecules. Here we present the assignment of an 81 aa construct for human Ninjurin1 Extracellular N-Terminal (ENT) domain, which comprises the critical adhesion domain.  相似文献   
4.
ABCA3 is critical for lamellar body biogenesis in vivo   总被引:1,自引:0,他引:1  
Mutations in ATP-binding cassette transporter A3 (human ABCA3) protein are associated with fatal respiratory distress syndrome in newborns. We therefore characterized mice with targeted disruption of the ABCA3 gene. Homozygous Abca3-/- knock-out mice died soon after birth, whereas most of the wild type, Abca3+/+, and heterozygous, Abca3+/-, neonates survived. The lungs from E18.5 and E19.5 Abca3-/- mice were less mature than wild type. Alveolar type 2 cells from Abca3-/- embryos contained no lamellar bodies, and expression of mature SP-B protein was disrupted when compared with the normal lung surfactant system of wild type embryos. Small structural and functional differences in the surfactant system were seen in adult Abca3+/- compared with Abca3+/+ mice. The heterozygotes had fewer lamellar bodies, and the incorporation of radiolabeled substrates into newly synthesized disaturated phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, and phosphatidylserine in both lamellar bodies and surfactant was lower than in Abca3+/+ mouse lungs. In addition, since the fraction of near term Abca3-/- embryos was significantly lower than expected from Mendelian inheritance ABCA3 probably plays roles in development unrelated to surfactant. Collectively, these findings strongly suggest that ABCA3 is necessary for lamellar body biogenesis, surfactant protein-B processing, and lung development late in gestation.  相似文献   
5.
6.
7.
In this study, cytoplasmic effects on the development of nuclear transplant embryos were examined. In addition, the production of offspring from nuclear transplant embryos was attempted. Nuclei from cleavage-stage embryos were transplanted to enucleated zygotes at different cell cycle stages and with different cytoplasmic volumes. A greater developmental rate to the blastocyst stage was observed in reconstituted late stage zygotes that received nuclei from late 2-cell stage embryos than in early stage zygotes (46.3% vs. 16.9%). A further increase in developmental rate to the blastocyst stage (85.5%) and in cell number was obtained in reconstituted late stage zygotes with reduced cytoplasmic volume. However, developmental potential of nuclei from 4- and 8-cell stage embryos was very limited, although they were transferred to enucleated late stage zygotes with reduced cytoplasm. After the transfer of blastocysts derived from nuclear transplant embryos to recipient females, live young were obtained from reconstituted embryos that received nuclei from late 2-cell stage embryos (28.6%). These results confirm that the development of nuclear transplant embryos can be affected by recipient cell cycle stage and cytoplasmic volume. Furthermore, the nuclei from late 2-cell stage embryos in which activation of the embryonic genome had occurred can be reprogrammed to a certain extent when transplanted into enucleated zygotes, especially late stage zygotes with reduced cytoplasmic content.  相似文献   
8.
9.
This study intended to record a species of feather mite, Neopteronyssus bilineatus Mironov, 2003, (Arachnida: Pteronyssidae), from a grey-capped pygmy woodpecker, Yungipicus canicapillus (Blyth, 1845), in the Republic of Korea. Mite samples were collected from the flight feathers of a woodpecker, preserved directly in 95% ethyl alcohol, and then observed by a light microscope after specimen preparation. Morphology of Neopteronyssus bilineatus is distinguished from other pici group species by opisthosoma part with 2 longitudinal bends, tarsal seta rIII 3 times longer than tarsus III in males, and 2 elongated hysteronotal plates extending beyond the level of setae e2 in females. In the present study, a species of feather mite, N. bilineatus, was newly recorded from Y. canicapillus in Korean fauna.  相似文献   
10.
Autophagy is an important cellular process that controls cells in a normal homeostatic state by recycling nutrients to maintain cellular energy levels for cell survival via the turnover of proteins and damaged organelles. However, persistent activation of autophagy can lead to excessive depletion of cellular organelles and essential proteins, leading to caspase-independent autophagic cell death. As such, inducing cell death through this autophagic mechanism could be an alternative approach to the treatment of cancers. Recently, we have identified a novel autophagic inducer, saikosaponin-d (Ssd), from a medicinal plant that induces autophagy in various types of cancer cells through the formation of autophagosomes as measured by GFP-LC3 puncta formation. By computational virtual docking analysis, biochemical assays and advanced live-cell imaging techniques, Ssd was shown to increase cytosolic calcium level via direct inhibition of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump, leading to autophagy induction through the activation of the Ca2+/calmodulin-dependent kinase kinase–AMP-activated protein kinase–mammalian target of rapamycin pathway. In addition, Ssd treatment causes the disruption of calcium homeostasis, which induces endoplasmic reticulum stress as well as the unfolded protein responses pathway. Ssd also proved to be a potent cytotoxic agent in apoptosis-defective or apoptosis-resistant mouse embryonic fibroblast cells, which either lack caspases 3, 7 or 8 or had the Bax-Bak double knockout. These results provide a detailed understanding of the mechanism of action of Ssd, as a novel autophagic inducer, which has the potential of being developed into an anti-cancer agent for targeting apoptosis-resistant cancer cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号