首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   10篇
  74篇
  2020年   3篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   3篇
  2012年   3篇
  2011年   2篇
  2010年   5篇
  2009年   1篇
  2008年   3篇
  2007年   4篇
  2006年   5篇
  2005年   1篇
  2004年   2篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   5篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   2篇
  1953年   1篇
排序方式: 共有74条查询结果,搜索用时 13 毫秒
1.
Overexpression in Escherichia coli of the fdx4 gene from Aquifex aeolicus has allowed isolation and characterization of the first hyperthermophilic [2Fe-2S](Scys)(4) protein, a homodimer of M = 2 x 12.4 kDa with one [2Fe-2S] cluster per subunit. This protein is undamaged by heating to 100 degrees C for at least three hours. The primary structure, in particular the characteristic distribution of the four cysteine ligands of the metal site, and the spectroscopic properties of the A. aeolicus protein relate it to well characterized [2Fe-2S] proteins from Clostridium pasteurianum and Azotobacter vinelandii. These proteins are also homologous to subunits or domains of hydrogenases and NADH-ubiquinone oxidoreductase (Complex I) of respiratory chains. The A. aeolicus [2Fe-2S] protein is thus representative of a presumably novel protein fold involved in a variety of functions in very diverse cellular backgrounds.  相似文献   
2.

Background and Aims

The bacterium Xylella fastidiosa (Xf), responsible for Pierce''s disease (PD) of grapevine, colonizes the xylem conduits of vines, ultimately killing the plant. However, Vitis vinifera grapevine varieties differ in their susceptibility to Xf and numerous other plant species tolerate Xf populations without showing symptoms. The aim of this study was to examine the xylem structure of grapevines with different susceptibilities to Xf infection, as well as the xylem structure of non-grape plant species that support or limit movement of Xf to determine if anatomical differences might explain some of the differences in susceptibility to Xf.

Methods

Air and paint were introduced into leaves and stems to examine the connectivity between stem and leaves and the length distribution of their vessels. Leaf petiole and stem anatomies were studied to determine the basis for the free or restricted movement of Xf into the plant.

Key Results

There were no obvious differences in stem or petiole vascular anatomy among the grape varieties examined, nor among the other plant species that would explain differences in resistance to Xf. Among grape varieties, the more tolerant ‘Sylvaner’ had smaller stem vessel diameters and 20 % more parenchyma rays than the other three varieties. Alternative hosts supporting Xf movement had slightly longer open xylem conduits within leaves, and more connection between stem and leaves, when compared with alternative hosts that limit Xf movement.

Conclusions

Stem–leaf connectivity via open xylem conduits and vessel length is not responsible for differences in PD tolerance among grape varieties, or for limiting bacterial movement in the tolerant plant species. However, it was found that tolerant host plants had narrower vessels and more parenchyma rays, possibly restricting bacterial movement at the level of the vessels. The implications of xylem structure and connectivity for the means and regulation of bacterial movement are discussed.  相似文献   
3.
BACKGROUND AND AIMS: Bacterial leaf scorch occurring in a number of economically important plants is caused by the xylem-limited bacterium Xylella fastidiosa (Xf). In grapevine, Xf systemic infection causes Pierce's disease and is lethal. Traditional dogma is that Xf movement between vessels requires the digestion of inter-vessel pit membranes. However, Yersinia enterocolitica (Ye) (a bacterium found in animals) and fluorescent beads moved rapidly within grapevine xylem from stem into leaf lamina, suggesting open conduits consisting of long, branched xylem vessels for passive movement. This study builds on and expands previous observations on the nature of these conduits and how they affect Xf movement. METHODS: Air, latex paint and green fluorescence protein (GFP)-Xf were loaded into leaves and followed to confirm and identify these conduits. Leaf xylem anatomy was studied to determine the basis for the free and sometimes restricted movement of Ye, beads, air, paint and GFP-Xf into the lamina. KEY RESULTS: Reverse loading experiments demonstrated that long, branched xylem vessels occurred exclusively in primary xylem. They were observed in the stem for three internodes before diverging into mature leaves. However, this stem-leaf connection was an age-dependent character and was absent for the first 10-12 leaves basal to the apical meristem. Free movement in leaf blade xylem was cell-type specific with vessels facilitating movement in the body of the blade and tracheids near the leaf margin. Air, latex paint and GFP-Xf all moved about 50-60% of the leaf length. GFP-Xf was never observed close to the leaf margin. CONCLUSIONS: The open vessels of the primary xylem offered unimpeded long distance pathways bridging stem to leaves, possibly facilitating the spread of bacterial pathogens in planta. GFP-Xf never reached the leaf margins where scorching appeared, suggesting a signal targeting specific cells or a toxic build-up at hydathodes.  相似文献   
4.
Two different stereoisomers of the dioxolane-linked gramicidin A (gA) channels were individually synthesized (the SS and RR dimers;. Science. 244:813-817). The structural differences between these dimers arise from different chiralities within the dioxolane linker. The SS dimer mimics the helicity and the inter- and intramolecular hydrogen bonding of the monomer-monomer association of gA's. In contrast, there is a significant disruption of the helicity and hydrogen bonding pattern of the ion channel in the RR dimer. Single ion channels formed by the SS and RR dimers in planar lipid bilayers have different proton transport properties. The lipid environment in which the different dimers are reconstituted also has significant effects on single-channel proton conductance (g(H)). g(H) in the SS dimer is about 2-4 times as large as in the RR. In phospholipid bilayers with 1 M [H(+)](bulk), the current-voltage (I-V) relationship of the SS dimer is sublinear. Under identical experimental conditions, the I-V plot of the RR dimer is supralinear (S-shaped). In glycerylmonooleate bilayers with 1 M [H(+)](bulk), both the SS and RR dimers have a supralinear I-V plot. Consistent with results previously published (. Biophys. J. 73:2489-2502), the SS dimer is stable in lipid bilayers and has fast closures. In contrast, the open state of the RR channel has closed states that can last a few seconds, and the channel eventually inactivates into a closed state in either phospholipid or glycerylmonooleate bilayers. It is concluded that the water dynamics inside the pore as related to proton wire transfer is significantly different in the RR and SS dimers. Different physical mechanisms that could account for this hypothesis are discussed. The gating of the synthetic gA dimers seems to depend on the conformation of the dioxolane link between gA's. The experimental results provide an important framework for a detailed investigation at the atomic level of proton conduction in different and relatively simple ion channel structures.  相似文献   
5.
AR Boobis  MB Slade  C Stern  KM Lewis  DS Davies 《Life sciences》1981,29(14):1443-1448
Cytochrome P-448 (mol wt 55,000 Daltons) from rabbit liver was purified to a specific content of 16.6 nmol/mg. Mice were immunised with this preparation, their spleens removed and dissociated lymphocytes hybridised with myeloma cells. Four monoclonal antibodies against cytochrome P-448 were raised and partially characterised. All four antibodies interacted with cytochrome P-448 in intact microsomal fractions and selectively immunoadsorbed cytochrome P-448 from solubilised microsomal preparations. One of the antibodies inhibited benzo[a] pyrene hydroxylase activity in a reconstituted system, one had no effect on activity and two increased activity. The possible applications of such antibodies are discussed.  相似文献   
6.

Background

Studies on host-pathogen interactions in a range of pathosystems have revealed an array of mechanisms by which plants reduce the efficiency of pathogenesis. While R-gene mediated resistance confers highly effective defense responses against pathogen invasion, quantitative resistance is associated with intermediate levels of resistance that reduces disease progress. To test the hypothesis that specific loci affect distinct stages of fungal pathogenesis, a set of maize introgression lines was used for mapping and characterization of quantitative trait loci (QTL) conditioning resistance to Setosphaeria turcica, the causal agent of northern leaf blight (NLB). To better understand the nature of quantitative resistance, the identified QTL were further tested for three secondary hypotheses: (1) that disease QTL differ by host developmental stage; (2) that their performance changes across environments; and (3) that they condition broad-spectrum resistance.

Results

Among a set of 82 introgression lines, seven lines were confirmed as more resistant or susceptible than B73. Two NLB QTL were validated in BC4F2 segregating populations and advanced introgression lines. These loci, designated qNLB1.02 and qNLB1.06, were investigated in detail by comparing the introgression lines with B73 for a series of macroscopic and microscopic disease components targeting different stages of NLB development. Repeated greenhouse and field trials revealed that qNLB1.06 Tx303 (the Tx303 allele at bin 1.06) reduces the efficiency of fungal penetration, while qNLB1.02 B73 (the B73 allele at bin 1.02) enhances the accumulation of callose and phenolics surrounding infection sites, reduces hyphal growth into the vascular bundle and impairs the subsequent necrotrophic colonization in the leaves. The QTL were equally effective in both juvenile and adult plants; qNLB1.06 Tx303 showed greater effectiveness in the field than in the greenhouse. In addition to NLB resistance, qNLB1.02 B73 was associated with resistance to Stewart's wilt and common rust, while qNLB1.06 Tx303 conferred resistance to Stewart's wilt. The non-specific resistance may be attributed to pleiotropy or linkage.

Conclusions

Our research has led to successful identification of two reliably-expressed QTL that can potentially be utilized to protect maize from S. turcica in different environments. This approach to identifying and dissecting quantitative resistance in plants will facilitate the application of quantitative resistance in crop protection.  相似文献   
7.
The relationship between anionic-lipid concentration and the functional properties of plasma-membrane domains was explored using the guinea-pig sperm membrane as a model, with polymyxin B (PXB) as a probe. Areas of plasmalemma specialized for fusion during the acrosome reaction had a higher affinity for the probe than adjacent nonfusigenic regions. In addition, capacitation--a process preceding acrosome:plasma-membrane fusion--markedly enlarged the area susceptible to PXB binding over the acrosomal cap. Protease treatment mimicked capacitation by increasing the acrosome-reaction incidence as well as PXB binding, at enzyme concentrations not affecting the surface coat nor altering filipin/sterol localization. Both proteolytic digestion and capacitation failed to augment PXB- or filipin-affinity in nonfusigenic zones, such as the post-acrosomal segment, including its particle-free maculae. Incubation of sperm in capacitating medium supplemented with 32P-labeled phosphate, followed by lipid extraction, thin-layer chromatography, and autoradiography, revealed a radioactive band comigrating with cardiolipin and phosphatidic acid. Vermiform protrusions elicited by PXB in the outer lamellae of cardiolipin- phosphatidylcholine liposomes resembled those seen in fusional regions of sperm membrane. We conclude that (a) differing concentrations of anionic lipids are found in adjacent domains of the sperm plasma membrane; (b) these domains mirror the functional regions of the membrane, with higher anionic-lipid concentrations localized over fusional zones; (c) the surface coat does not participate in the maintenance of such domains; (d) anionic-lipid synthesis may contribute to their formation; and (e) anionic-lipid concentrations increase as the membrane becomes fusionally competent, indicating that cellular modulation of lipid domains accompanies regulation of membrane function.  相似文献   
8.
9.
To examine the freeze-fracture appearance of membrane alterations accompanying the preparation of sperm membranes for fusions-the first preparatory stage occurring before physiological release of the acrosomal content, the second afterward-we induced the acrosome reaction in capacitated guinea pig spermatozoa by adding calcium to the mixture. The most common features observed before fusion of the acrosomal and plasma membranes were the deletion of fibrillar intramembranous particles from the E-fracture faces of both membranes, and the clearance of globular particles from the P face of the plasma membrane-events taking place near the terminus of the equatorial segment. Large particles, >12nm, remained not far from the cleared E-face patches. The P face of the outer acrosomal membrane is virtually clear from the outset. In addition, when fusion was completed, occasional double lines of large particles transiently embossed the P face of the plasma membrane (postacrosomal) side of the fusion zone. Behind the line of fusion, another series of particle-cleared foci emerged. We interpreted these postfusion membrane clearances as a second adaptation for sperm-egg interaction. Induction of the acrosome reaction in media containing phosphatidylcholine liposomes resulted in their apparent attachment, incorporation, or exchange in both the originally and secondarily cleared regions. Our observations support the concepts that membranes become receptive to union at particle- deficient interfaces, and that the physiologically created barren areas in freeze-fracture replicas may herald incipient membrane fusion.  相似文献   
10.
Resistance to conventional anticancer therapies in patients with advanced solid tumors has prompted the need of alternative cancer therapies. Moreover, the success of novel cancer therapies depends on their selectivity for cancer cells with limited toxicity to normal tissues. Several decades after Coley's work a variety of natural and genetically modified non-pathogenic bacterial species are being explored as potential antitumor agents, either to provide direct tumoricidal effects or to deliver tumoricidal molecules. Live, attenuated or genetically modified non-pathogenic bacterial species are capable of multiplying selectively in tumors and inhibiting their growth. Due to their selectivity for tumor tissues, these bacteria and their spores also serve as ideal vectors for delivering therapeutic proteins to tumors. Bacterial toxins too have emerged as promising cancer treatment strategy. The most potential and promising strategy is bacteria based gene-directed enzyme prodrug therapy. Although it has shown successful results in vivo yet further investigation about the targeting mechanisms of the bacteria are required to make it a complete therapeutic approach in cancer treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号