首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   4篇
  国内免费   10篇
  2024年   1篇
  2023年   5篇
  2022年   5篇
  2021年   8篇
  2020年   4篇
  2019年   8篇
  2018年   3篇
  2016年   4篇
  2015年   2篇
  2014年   11篇
  2013年   6篇
  2012年   11篇
  2011年   3篇
  2010年   7篇
  2009年   7篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2003年   1篇
  2002年   2篇
  1989年   1篇
排序方式: 共有95条查询结果,搜索用时 672 毫秒
1.
Disease resistance (R) gene, RPP13, plays an important role in the resistance of plants to pathogen infections; its function in resistance of wheat to powdery mildew remains unknown. In this study, a RNA-Seq technique was used to monitor expression of genes in susceptible wheat ‘Jing411’ and resistant near-isogenic line ‘BJ-1’ in response to powdery mildew infection. Overall, 413 differential expression genes were observed and identified as involved in disease resistance. RPP13 homologous gene on wheat chromosome 7D was preliminarily identified using the wheat 660K SNP chip. RPP13 was highly expressed in ‘BJ-1’ and encodes 1,027 amino acids, including CC, NB and LRR domain, termed TaRPP13-3. After inoculation with powdery mildew, expression of TaRPP13-3 in resistant wheat changed with time, but average expression was higher when compared to susceptible variety, thus indicating that TaRPP13-3 is involved in resistance to powdery mildew. Virus-induced gene silencing (VIGS) was used to inhibit expression of TaRPP13-3 in resistant parent ‘Brock’. Results indicated that silencing of TaRPP13-3 led to decreased disease resistance in ‘Brock’. Overall results of this study indicate that TaRPP13-3 gene is involved in the defence response of wheat to powdery mildew and plays a positive role in wheat powdery mildew interactions.  相似文献   
2.
Wang  Chaojie  Gong  Yandong  Wei  Anbang  Huang  Tao  Hou  Siyuan  Du  Junjie  Li  Zongcheng  Wang  Junliang  Liu  Bing  Lan  Yu 《中国科学:生命科学英文版》2021,64(12):2073-2087
Science China Life Sciences - During embryogenesis, hematopoietic stem progenitor cells (HSPCs) are believed to be derived from hemogenic endothelial cells (HECs). Moreover, arterial feature is...  相似文献   
3.
Li  Bingxin  Li  Wanyan  Tian  Yunbo  Guo  Sixuan  Qian  Long  Xu  Danning  Cao  Nan 《Biological trace element research》2020,193(2):508-516
Biological Trace Element Research - Selenium (Se) has been well recognized as an immune-enhancing agent with antioxidant and anti-tumor properties. The commonly used chemotherapy drug,...  相似文献   
4.
Fabrication of efficient Pb reduced inorganic CsPbI2Br perovskite solar cells (PSC) are an important part of environment‐friendly perovskite technology. In this work, 10% Pb reduction in CsPb0.9Zn0.1I2Br promotes the efficiency of PSCs to 13.6% (AM1.5, 1sun), much higher than the 11.8% of the pure CsPbI2Br solar cell. Zn2+ has stronger interaction with the anions to manipulate crystal growth, resulting in size‐enlarged crystallite with enhanced growth orientation. Moreover, the grain boundaries (GBs) are passivated by the Cs‐Zn‐I/Br compound. The high quality CsPb0.9Zn0.1I2Br greatly diminishes the GB trap states and facilitates the charge transport. Furthermore, the Zn4s‐I5p states slightly reduce the energy bandgap, accounting for the wider solar spectrum absorption. Both the crystalline morphology and energy state change benefit the device performance. This work highlights a nontoxic and stable Pb reduction method to achieve efficient inorganic PSCs.  相似文献   
5.
6.
7.
Powdery mildew caused by Blumeria graminis f. sp. tritici is one of the most important wheat diseases worldwide and breeding for resistance using diversified disease resistance genes is the most promising approach to prevent outbreaks of powdery mildew. A powdery mildew resistance gene, originating from wild emmer wheat (Triticum turgidum var. dicoccoides) accessions collected from Israel, has been transferred into the hexaploid wheat line 3D232 through crossing and backcrossing. Inoculation results with 21 B. graminis f. sp. tritici races indicated that 3D232 is resistant to all of the powdery mildew isolates tested. Genetic analyses of 3D232 using an F2 segregating population and F3 families indicated that a single dominant gene, Ml3D232, confers resistance in the host seedling stage. By applying molecular markers and bulked segregant analysis (BSA), we have identified polymorphic simple sequence repeats (SSR), expressed sequence tags (EST) and derived sequence tagged site (STS) markers to determine that the Ml3D232 is located on chromosome 5BL bin 0.59–0.76. Comparative genetic analyses using mapped EST markers and genome sequences of rice and Brachypodium established co-linearity of the Ml3D232 genomic region with a 1.4 Mb genomic region on Brachypodium distachyon chromosome 4, and a 1.2 Mb contig located on the Oryza sativa chromosome 9. Our comparative approach enabled us to develop new EST–STS markers and to delimit the genomic region carrying Ml3D232 to a 0.8 cM segment that is collinear with a 558 kb region on B. distachyon. Eight EST markers, including an NBS-LRR analog, co-segregated with Ml3D232 to provide a target site for fine genetic mapping, chromosome landing and map-based cloning of the powdery mildew resistance gene. This newly developed common wheat germplasm provides broad-spectrum resistance to powdery mildew and a valuable resource for wheat breeding programs.  相似文献   
8.

Background  

MicroRNAs (miRNAs) are a class of small non-coding regulatory RNAs that regulate gene expression by guiding target mRNA cleavage or translational inhibition. MiRNAs can have large-scale regulatory effects on development and stress response in plants.  相似文献   
9.
Synthesis and bioevaluation of N-(arylalkyl)-homospermidine conjugates   总被引:1,自引:0,他引:1  
N1-(Arylalkyl)homospermidines (1c-1f) and terminally piperazine-substituted homospermidine conjugates (2a-2e) were synthesized and evaluated for cytotoxicity in mouse leukemia L1210, alpha-difluoromethylornithine (DFMO)-treated L1210, melanoma B16, spermidine (SPD)-treated B16, and HeLa cell lines. Results demonstrated that homospermidine was a more effective vector than piperazine-substituted homospermidine in ferrying diverse arenes into cells via the polyamine transporter. The leading compound, 9-anthracenemethyl-homospermidine (1a), was shown to induce apoptosis in B16 cells and IL-3 dependent FL5.12A pro-B cells. The novel conjugate 4-biphenylmethyl-homospermidine (1e) could also induce apoptosis. However, it exhibited different effect on the cell cycle of B16 cells compared to 1a.  相似文献   
10.
Yu  Qilong  Sun  Wenjing  Han  Yingyan  Hao  Jinghong  Qin  Xiaoxiao  Liu  Chaojie  Fan  Shuangxi 《Plant Growth Regulation》2022,96(3):497-509
Plant Growth Regulation - Lettuce is a popular fresh vegetable, and high-temperature stress will reduce the yield of lettuce. Spermidine is an essential phytohormone in plant stress responses....  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号