首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3577篇
  免费   303篇
  国内免费   5篇
  3885篇
  2024年   4篇
  2023年   20篇
  2022年   60篇
  2021年   97篇
  2020年   48篇
  2019年   66篇
  2018年   88篇
  2017年   70篇
  2016年   133篇
  2015年   191篇
  2014年   214篇
  2013年   276篇
  2012年   292篇
  2011年   285篇
  2010年   183篇
  2009年   158篇
  2008年   192篇
  2007年   201篇
  2006年   194篇
  2005年   203篇
  2004年   190篇
  2003年   175篇
  2002年   159篇
  2001年   32篇
  2000年   19篇
  1999年   29篇
  1998年   51篇
  1997年   33篇
  1996年   21篇
  1995年   22篇
  1994年   14篇
  1993年   18篇
  1992年   13篇
  1991年   10篇
  1990年   9篇
  1989年   9篇
  1988年   10篇
  1987年   11篇
  1986年   6篇
  1985年   9篇
  1984年   11篇
  1983年   6篇
  1982年   4篇
  1981年   4篇
  1980年   11篇
  1979年   7篇
  1977年   4篇
  1974年   4篇
  1973年   3篇
  1962年   3篇
排序方式: 共有3885条查询结果,搜索用时 0 毫秒
1.
We describe a calcium transport that is sensitive to ruthenium red in liposomes reconstituted with mitochondrial extracts. This system is able to build an internally negative membrane potential, which allows the electrogenic influx of Ca2+ and Sr2+. Proteins with molecular weights higher than 35 kDa were incorporated to the vesicles, and enhanced the accumulation of the cation in an energy-dependent fashion.  相似文献   
2.
Summary 1. Expression of the apamin-sensitive K+ channel (SK+) in rat skeletal muscle is neurally regulated. The regulatory effect of the nerve over the expression of some muscle ion channels has been attributed to the electrical activity triggered by the nerve and/or to a trophic effect of some molecules transported from the soma to the axonal endings. 2. SK+ channels apparently are involved in myotonic dystrophy (MD), therefore understanding the factors that regulate their expression may ultimately have important clinical relevance. 3. To establish if axoplasmic transport is involved in this process, we used two experimental approaches in adult rats: (a) Both sciatic nerves were severed, leaving a short or a long nerve stump attached to the anterior tibialis (AT). (b) Colchicine or vinblastine (VBL), two axonal transport blockers of different potencies, was applied on one leg to the sciatic nerve. To determine whether electrical activity affects the expression of SK+ channels, denervated AT were directly stimulated. The corresponding contralateral muscles were used as controls. 4. With these experimental conditions we measured (a) apamin binding to muscle membranes, (b) muscle contractile characteristics, and (c) electromyographic activity. 5. In the short- and long-nerve stump experiments, 5 days after denervation125I-apamin binding to AT membranes was 2.0 times higher in the short-stump side. This difference disappeared at longer times. The delayed expression of SK+ channels in the muscle left with a longer nerve stump can be attributed to the extra axoplasm contained in the longer stump, which maintains a normally repressive signal for a longer period of time. Ten to 15 days after application of axonal transport blockers we found that the muscle half-relaxation time increased in the drug-treated side and apamin partially reverted the prolonged relaxation. Myotonic-like discharges specifically blockable by apamin were always present in the drug-treated leg.125I-Apamin binding, which is undetectable in a microsomal preparation from hind leg control muscles, was increased in the drug-treated preparations. Apamin binding to denervated and stimulated AT muscles was lower than in the contralateral unstimulated muscles [3.3±1.0 vs 6.8±0.8 (n=4) fmol/mg protein]. 6. Our results demonstrate that electrical activity and axoplasmic transport are involved in the control of expression of SK+ in rat skeletal muscle. However, the increased expression of this channel induces myotonic-like characteristics that are reversed by apamin. This myotonic activity could be a model for MD.  相似文献   
3.
The idea that memories are immutable after consolidation has been challenged. Several reports have shown that after the presentation of a specific reminder, reactivated old memories become labile and again susceptible to amnesic agents. Such vulnerability diminishes with the progress of time and implies a re-stabilization phase, usually referred to as reconsolidation. To date, the main findings describe the mechanisms associated with the labilization-reconsolidation process, but little is known about its functionality from a biological standpoint. Indeed, two functions have been proposed. One suggests that destabilization of the original memory after the reminder allows the integration of new information into the background of the original memory (memory updating), and the other suggests that the labilization-reconsolidation process strengthens the original memory (memory strengthening). We have previously reported the reconsolidation of human declarative memories, demonstrating memory updating in the framework of reconsolidation. Here we deal with the strengthening function attributed to the reconsolidation process. We triggered labilization-reconsolidation processes successively by repeated presentations of the proper reminder. Participants learned an association between five cue-syllables and their respective response-syllables. Twenty-four hours later, the paired-associate verbal memory was labilized by exposing the subjects to one, two or four reminders. The List-memory was evaluated on Day 3 showing that the memory was improved when at least a second reminder was presented in the time window of the first labilization-reconsolidation process prompted by the earlier reminder. However, the improvement effect was revealed on Day 3, only when at least two reminders were presented on Day 2 and not as a consequence of only retrieval. Therefore, we propose central concepts for the reconsolidation process, emphasizing its biological role and the parametrical constrains for this function to be operative.  相似文献   
4.
5.
The effect of anaerobiosis on the induction of the xanthophyll cycle was investigated in Chlamydomonas reinhardtii. The results showed that, anaerobiosis obtained by either sulfur starvation or by bubbling nitrogen in the culture grown in complete medium induced the xanthophyll cycle even when cultures were exposed to low light conditions. The zeaxanthin content reached 35 mmol mol?1 Chl a, after 110 h in anaerobic sulfur-starved cultures, and 30 mmol mol?1 Chl a within 24 h in sulfur replete cultures bubbled with nitrogen. Both starved and non-starved cultures grown under aerobic conditions, did not exhibit any sizeable increase in the zeaxanthin content. Chlorophyll fluorescence measurements revealed a decrease in the maximum photochemical quantum yield of PSII (Fv/Fm) by more than 50 %. The chlorophyll fluorescence kinetics (OJIP) analysis showed a strong rise at the J-step indicating a strong reduction of QA. Our findings demonstrated that anaerobiosis in low light exposed cultures induced the xanthophyll cycle through a strong increase of the level of plastoquinone pool reduction, which was associated to the formation of a trans-thylakoid membranes proton gradient, while in dark anaerobic cultures, no appreciable induction of xanthophyll cycle could be observed, despite the sizeable increase in non–photochemical quenching.  相似文献   
6.
To test the hypothesis that fetal hepatic glutamate output diverts the products of hepatic amino acid metabolism from hepatic gluconeogenesis, ovine fetal hepatic and umbilical uptakes of glucose and glucogenic substrates were measured before and during fetal glucagon-somatostatin (GS) infusion and during the combined infusion of GS, alanine, glutamine, and arginine. Before the infusions, hepatic uptake of lactate, alanine, glutamine, arginine, and other substrates was accompanied by hepatic output of pyruvate, aspartate, serine, glutamate, and ornithine. The GS infusion induced hepatic output of 1.00 +/- 0.07 mol glucose carbon/mol O(2) uptake, an equivalent reduction in hepatic output of pyruvate and glutamate carbon, a decrease in umbilical glucose uptake and placental uptake of fetal glutamate, an increase in hepatic alanine and arginine clearances, and a decrease in umbilical alanine, glutamine, and arginine uptakes. The latter result suggests that glucagon inhibits umbilical amino acid uptake. We conclude that fetal hepatic pyruvate and glutamate output is part of an adaptation to placental function that requires the fetal liver to maintain both a high rate of catabolism of glucogenic substrates and a low rate of gluconeogenesis.  相似文献   
7.
8.
One approach to the functional characterization of the lysosome lies in the use of proteomic methods to identify proteins in subcellular fractions enriched for this organelle. However, distinguishing between true lysosomal residents and proteins from other cofractionating organelles is challenging. To this end, we implemented a quantitative mass spectrometry approach based on the selective decrease in the buoyant density of liver lysosomes that occurs when animals are treated with Triton-WR1339. Liver lysosome-enriched preparations from control and treated rats were fractionated by isopycnic sucrose density gradient centrifugation. Tryptic peptides derived from gradient fractions were reacted with isobaric tag for relative and absolute quantitation eight-plex labeling reagents and analyzed by two-dimensional liquid chromatography matrix-assisted laser desorption ionization time-of-flight MS. Reporter ion intensities were used to generate relative protein distribution profiles across both types of gradients. A distribution index was calculated for each identified protein and used to determine a probability of lysosomal residence by quadratic discriminant analysis. This analysis suggests that several proteins assigned to the lysosome in other proteomics studies are not true lysosomal residents. Conversely, results support lysosomal residency for other proteins that are either not or only tentatively assigned to this location. The density shift for two proteins, Cu/Zn superoxide dismutase and ATP-binding cassette subfamily B (MDR/TAP) member 6, was corroborated by quantitative Western blotting. Additional balance sheet analyses on differential centrifugation fractions revealed that Cu/Zn superoxide dismutase is predominantly cytosolic with a secondary lysosomal localization whereas ATP-binding cassette subfamily B (MDR/TAP) member 6 is predominantly lysosomal. These results establish a quantitative mass spectrometric/subcellular fractionation approach for identification of lysosomal proteins and underscore the necessity of balance sheet analysis for localization studies.  相似文献   
9.
The self‐assembling MexA‐MexB‐OprM efflux pump system, encoded by the mexO operon, contributes to facile resistance of Pseudomonas aeruginosa by actively extruding multiple antimicrobials. MexR negatively regulates the mexO operon, comprising two adjacent MexR binding sites, and is as such highly targeted by mutations that confer multidrug resistance (MDR). To understand how MDR mutations impair MexR function, we studied MexR‐wt as well as a selected set of MDR single mutants distant from the proposed DNA‐binding helix. Although DNA affinity and MexA‐MexB‐OprM repression were both drastically impaired in the selected MexR‐MDR mutants, MexR‐wt bound its two binding sites in the mexO with high affinity as a dimer. In the MexR‐MDR mutants, secondary structure content and oligomerization properties were very similar to MexR‐wt despite their lack of DNA binding. Despite this, the MexR‐MDR mutants showed highly varying stabilities compared with MexR‐wt, suggesting disturbed critical interdomain contacts, because mutations in the DNA‐binding domains affected the stability of the dimer region and vice versa. Furthermore, significant ANS binding to MexR‐wt in both free and DNA‐bound states, together with increased ANS binding in all studied mutants, suggest that a hydrophobic cavity in the dimer region already shown to be involved in regulatory binding is enlarged by MDR mutations. Taken together, we propose that the biophysical MexR properties that are targeted by MDR mutations—stability, domain interactions, and internal hydrophobic surfaces—are also critical for the regulation of MexR DNA binding.  相似文献   
10.
Group II introns are large ribozymes that require the assistance of intron-encoded or free-standing maturases to splice from their pre-mRNAs in vivo. They mainly splice through the classical branching pathway, being released as RNA lariats. However, group II introns can also splice through secondary pathways like hydrolysis and circularization leading to the release of linear and circular introns, respectively. Here, we assessed in vivo splicing of various constructs of the Ll.LtrB group II intron from the Gram-positive bacterium Lactococcus lactis. The study of excised intron junctions revealed, in addition to branched intron lariats, the presence of perfect end-to-end intron circles and alternatively circularized introns. Removal of the branch point A residue prevented Ll.LtrB excision through the branching pathway but did not hinder intron circle formation. Complete intron RNA circles were found associated with the intron-encoded protein LtrA forming nevertheless inactive RNPs. Traces of double-stranded head-to-tail intron DNA junctions were also detected in L. lactis RNA and nucleic acid extracts. Some intron circles and alternatively circularized introns harbored variable number of non-encoded nucleotides at their splice junction. The presence of mRNA fragments at the splice junction of some intron RNA circles provides insights into the group II intron circularization pathway in bacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号