首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   13篇
  88篇
  2022年   1篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   1篇
  2013年   7篇
  2012年   2篇
  2011年   4篇
  2010年   8篇
  2008年   6篇
  2007年   4篇
  2006年   6篇
  2005年   7篇
  2004年   5篇
  2002年   1篇
  2001年   2篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1992年   3篇
  1991年   6篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
1.
Recently it was demonstrated that beta-actin can be produced in Saccharomyces cerevisiae by using the expression plasmid pY beta actin (R. Karlsson, Gene 68:249-258, 1988), and several site-specific mutants are now being produced in a protein engineering study. To establish a system with which recombinant actin mutants can be tested in vivo and thus enable a correlation to be made with functional effects observed in vitro, a yeast strain lacking endogenous yeast actin and expressing exclusively beta-actin was constructed. This strain is viable but has an altered morphology and a slow-growth phenotype and is temperature sensitive to the point of lethality at 37 degrees C.  相似文献   
2.
The physiological response to continuous and intermittent handgrip exercise was evaluated. Three experiments were performed until exhaustion at 25% of maximal voluntary contraction (MVC): experiment 1, continuous handgrip (CH) (n = 8); experiment 2, intermittent handgrip with 10-s rest pause every 3 min (IH) (n = 8); and experiment 3, as IH but with electrical stimulation (ES) of the forearm extensors in the pauses (IHES) (n = 4). Before, during, and after exercise, recordings were made of heart rate (HR), arterial blood pressure (BP), exercising forearm blood flow, and concentrations of potassium [K+] and lactate [La-] in venous blood from both arms. The electromyogram (EMG) of the exercising forearm extensors and perceived exertion were monitored during exercise. Before and up to 24 h after exercise, observations were made of MVC, of force response to electrical stimulation and of the EMG response to a 10-s test contraction (handgrip) at 25% of the initial MVC. Maximal endurance time (tlim) was significantly longer in IH (23.1 min) than in CH (16.2 min). The ES had no significant effect on tlim. During exercise, no significant differences were seen between CH and IH in blood flow, venous [K+] and [La-], or EMG response. The HR and BP increased at the same rate in CH and IH but, because of the longer duration of IH, the levels at exhaustion were higher in this protocol. The subjects reported less subjective fatigue in IH. During recovery, return to normal MVC was slower after CH (24 h) than after IH (4 h).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
3.
Based on studies in yeast and mammalian cells the Elongator complex has been implicated in functions as diverse as histone acetylation, polarized protein trafficking and tRNA modification. Here we show that Arabidopsis mutants lacking the Elongator subunit AtELP3/ELO3 have a defect in tRNA wobble uridine modification. Moreover, we demonstrate that yeast elp3 and elp1 mutants expressing the respective Arabidopsis Elongator homologues AtELP3/ELO3 and AtELP1/ELO2 assemble integer Elongator complexes indicating a high degree of structural conservation. Surprisingly, in vivo complementation studies based on Elongator‐dependent tRNA nonsense suppression and zymocin tRNase toxin assays indicated that while AtELP1 rescued defects of a yeast elp1 mutant, the most conserved Elongator gene AtELP3, failed to complement an elp3 mutant. This lack of complementation is due to incompatibility with yeast ELP1 as coexpression of both plant genes in an elp1 elp3 yeast mutant restored Elongator's tRNA modification function in vivo. Similarly, AtELP1, not ScELP1 also supported partial complementation by yeast–plant Elp3 hybrids suggesting that AtElp1 has less stringent sequence requirements for Elp3 than ScElp1. We conclude that yeast and plant Elongator share tRNA modification roles and propose that this function might be conserved in Elongator from all eukaryotic kingdoms of life.  相似文献   
4.
The intracellular bacterium Francisella tularensis is the causative agent of tularemia and poses a serious threat as an agent of bioterrorism. We have developed a highly effective molecular subtyping system from 25 variable-number tandem repeat (VNTR) loci. In our study, multiple-locus VNTR analysis (MLVA) was used to analyze genetic relationships and potential population structure within a global collection of 192 F. tularensis isolates, including representatives from each of the four subspecies. The VNTR loci displayed between 2 and 31 alleles with Nei's diversity values between 0.05 and 0.95. Neighbor-joining cluster analysis of VNTR data revealed 120 genotypes among the 192 F. tularensis isolates, including accurate subspecies identification. F. tularensis subsp. tularensis (type A) isolates showed great diversity at VNTR loci, while F. tularensis subsp. holarctica (type B) isolates showed much lower levels despite a much broader geographical prevalence. The resolution of two distinct clades within F. tularensis subsp. tularensis (designated A.I and A.II) revealed a previously unrecognized genetic division within this highly virulent subspecies. F. tularensis subsp. holarctica appears to have recently spread globally across continents from a single origin, while F. tularensis subsp. tularensis has a long and complex evolutionary history almost exclusively in North America. The sole non-North American type A isolates (Slovakian) were closely related to the SCHU S4 strain. Significant linkage disequilibrium was detected among VNTR loci of F. tularensis consistent with a clonal population structure. Overall, this work greatly augments the study of tularemia ecology and epidemiology, while providing a framework for future forensic analysis of F. tularensis isolates.  相似文献   
5.
Mycoplasma fermentans seems to be involved in several pathogenic conditions in humans, and is among other things capable of fusing with T-cells and lymphocytes. The choline-containing phosphoglycolipid 6'-O-(3"-phosphocholine-2"-amino-1"-phospho-1",3"-propanediol)-alpha-D-glucopyranosyl-(1'-->3)-1,2-diacylglycerol (MfGL-II) in the membrane of M. fermentans has been suggested to enhance the fusion process, and the characteristics of MfGL-II were therefore investigated. When a cell culture ages the fraction of MfGL-II increases, and the fraction of the other major membrane lipid, phosphatidylglycerol (PtdGro), decreases concomitantly. Swelling experiments showed that the permeability and osmotic fragility are markedly reduced in aged cells. MfGL-II is selectively released into the surrounding medium when aged M. fermentans cells are incubated in buffer containing EDTA. The physico-chemical properties of MfGL-II were studied by NMR spectroscopy and differential scanning calorimetry, and they can explain the biochemical results. The temperature for the transition between gel and lamellar liquid crystalline (Lalpha) phases is 35-45 degrees C higher for MfGL-II than for PtdGro, which most probably gives rise to the reduced permeability in aged cells. At high water contents MfGL-II forms an Lalpha phase and isotropic aggregates which were interpreted to be vesicles with a radius of approximately 450 A. It is proposed that MfGL-II forms vesicles in the surrounding medium when it is released from the cell membrane. Neither EDTA nor Ca2+ ions have a significant influence on the aggregate structures formed by MfGL-II. Our results indicate that MfGL-II has no fusogenic properties. It is more probable that a recently identified lysolipid in the M. fermentans membrane acts as a fusogen.  相似文献   
6.
The presence of 5-methyluridine (m5U) at position 54 is a ubiquitous feature of most bacterial and eukaryotic elongator tRNAs. In this study, we have identified and characterized the TRM2 gene that encodes the tRNA(m5U54)methyltransferase, responsible for the formation of this modified nucleoside in Saccharomyces cerevisiae. Transfer RNA isolated from TRM2-disrupted yeast strains does not contain the m5U54 nucleoside. Moreover, a glutathione S-transferase (GST) tagged recombinant, Trm2p, expressed in Escherichia coli displayed tRNA(m5U54)methyltransferase activity using as substrate tRNA isolated from a trm2 mutant strain, but not tRNA isolated from a TRM2 wild-type strain. In contrast to what is found for the tRNA(m5U54)methyltransferase encoding gene trmA+ in E. coli, the TRM2 gene is not essential for cell viability and a deletion strain shows no obvious phenotype. Surprisingly, we found that the TRM2 gene was previously identified as the RNC1/NUD1 gene, believed to encode the yNucR endo-exonuclease. The expression and activity of the yNucR endo-exonuclease is dependent on the RAD52 gene, and does not respond to increased gene dosage of the RNC1/NUD1 gene. In contrast, we find that the expression of a trm2-LacZ fusion and the activity of the tRNA(m5U54)methyltransferase is not regulated by the RAD52 gene and does respond on increased gene dosage of the TRM2 (RNC1/NUD1) gene. Furthermore, there was no nuclease activity associated with a GST-Trm2 recombinant protein. The purified yNucR endo-exonuclease has been reported to have an NH2-D-E-K-N-L motif, which is not found in the Trm2p. Therefore, we suggest that the yNucR endo-exonuclease is encoded by a gene other than TRM2.  相似文献   
7.
8.
The mechanism and stereochemistry in connection with enzymatic conversion of cholesta-4,6-dien-3-one into cholestanol was studied. Rat and mouse liver microsomes are able to catalyze NADPH-dependent sequential saturation of the two double bonds. Evidence was obtained that the saturation of the delta 6-double bond includes transfer of a hydride ion from the B-side of the cofactor to the 7-position of the steroid (mainly 7 beta-position), followed by addition of a proton to the 6 alpha-position (mainly trans addition). The saturation of the delta 4-double bond includes transfer of a hydride ion from the B-side of the cofactor to the 5 alpha-position of the steroid followed by addition of a proton to the 4 beta-position (trans addition). The reduction of the 3-oxo group was found to involve transfer of a hydride ion from the B-side of the cofactor NADPH to the 3 alpha-position of the steroid. The results are in accord with the contention that the enzymatic saturation of the two double bonds involves a polarization of the 3-oxo group making C-7 electrophilic and C-6 nucleophilic in connection with the saturation of the delta 6-double bond and C-5 electrophilic and C-4 nucleophilic in connection with the saturation of the delta 4-double bond.  相似文献   
9.
The degree to which growth in early life stages of animals is regulated via density‐dependent feedbacks through prey resources is much debated. Here we have studied the influence of size‐ and density‐dependent mechanisms as well as size‐selective predation pressure by cannibalistic perch Perca fluviatilis on growth patterns of young‐of‐the‐year (YOY) perch covering several lakes and years. We found no influence of initial size or temperature on early body size development of perch. In contrast, there was a negative relationship between reproductive output and the length of YOY perch at five weeks of age. However, rather than an effect of density‐dependent growth mediated via depressed resources the relationship was driven by positive size‐selective cannibalism removing large individuals. Hence, given a positive correlation between the density of victims and predation pressure by cannibals, size‐dependent interactions between cannibals and their victims may wrongly be interpreted as patterns of density‐dependent growth in the victim cohort. Overall, our results support the view that density‐dependent resource‐limitation in early life stages is rare. Still, patterns of density‐dependent growth may emerge, but from variation in size‐selective predation pressure rather than density as such. This illustrates the importance of taking overall population demography and predatory interactions into account when studying growth patterns among recruiting individuals.  相似文献   
10.
Transfer RNAs specific for Gln, Lys, and Glu from all organisms (except Mycoplasma) and organelles have a 2-thiouridine derivative (xm(5)s(2)U) as wobble nucleoside. These tRNAs read the A- and G-ending codons in the split codon boxes His/Gln, Asn/Lys, and Asp/Glu. In eukaryotic cytoplasmic tRNAs the conserved constituent (xm(5)-) in position 5 of uridine is 5-methoxycarbonylmethyl (mcm(5)). A protein (Tuc1p) from yeast resembling the bacterial protein TtcA, which is required for the synthesis of 2-thiocytidine in position 32 of the tRNA, was shown instead to be required for the synthesis of 2-thiouridine in the wobble position (position 34). Apparently, an ancient member of the TtcA family has evolved to thiolate U34 in tRNAs of organisms from the domains Eukarya and Archaea. Deletion of the TUC1 gene together with a deletion of the ELP3 gene, which results in the lack of the mcm(5) side chain, removes all modifications from the wobble uridine derivatives of the cytoplasmic tRNAs specific for Gln, Lys, and Glu, and is lethal to the cell. Since excess of the unmodified form of these three tRNAs rescued the double mutant elp3 tuc1, the primary function of mcm(5)s(2)U34 seems to be to improve the efficiency to read the cognate codons rather than to prevent mis-sense errors. Surprisingly, overexpression of the mcm(5)s(2)U-lacking tRNA(Lys) alone was sufficient to restore viability of the double mutant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号