首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   4篇
  2019年   1篇
  2016年   2篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2011年   5篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   4篇
  2002年   5篇
  1999年   2篇
  1998年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
2.
Transformed rat embryo fibroblasts E1A + cHa-ras known to possess high proapoptotic sensitivity and not to be arrested after DNA damage or upon serum starvation, were transfected with bcl-2 gene using calcium-phosphate precipitation method. Triple transformants E1A + cHa-ras + bcl-2 appeared to be protected from damage- and serum depletion-induced apoptosis and to restore cell cycle checkpoint control. Using the method of flow cytometry we have shown that these transformants are arrested in different phases of cell cycle in response to irradiation, adriamycin treatment and serum deprivation. Overexpression of bcl-2 in E1A + cHa-ras-transformed cells entirely suppresses adriamycin-induced apoptosis and significantly reduces the level of apoptosis triggered by irradiation and growth factor withdrawal, as we have revealed by the test of clonogenic survival and electrophoretic analysis of oligonucleosomal DNA fragmentation. Our results have demonstrated, for the first time, that the oncogenic Ras co-immunoprecipitates with transfected Bcl-2 in E1A + cHa-ras + bcl-2 transformed cells after irradiation but not after adriamycin treatment. Bcl-2-Ras complexes were also observed in transformants E1A + cHa-ras + bcl-2 after serum starvation. Taken together, these data suggest that Bcl-2 and Ras interaction might play a crucial role in the cell cycle checkpoints restoration and apoptotic events regulation in transformants E1A + cHa-ras + bcl-2 exposed to DNA-damaging factors or growth factor-deprived.  相似文献   
3.
Introduction of the E1A early region of the human adenovirus type 5 impairs the ability of mammalian cells to arrest the cell cycle at G1/S after damage. Two-parameter fluorescent-activated cell sorting (FACS) with iododeoxyuridine revealed the radiation-induced G1/S arrest in rat embryo fibroblasts transformed with the complementing E1A + E1B-19 kDa oncogenes. This was due to selective inhibition of CycIE/Cdk2-associated kinase activity, while activities of type 2 kinase and of CyclA/Cdk2 complexes remained unchanged. The inhibitor of G1-phase cyclin kinases, p21/Waf1, was accumulated and interacted with target kinases both in normal and in transformed cells after irradiation. As shown by immunoprecipitation, p21/Waf1 formed complexes with the E1A on coproducts in the transformants, which possibly accounted for its functional inactivation. Kinase modification in cyclin-kinase complexes was assumed to play a key role in regulation of cyclin-dependent kinases in the transformants with inactivated p21/Waf1.  相似文献   
4.
Degradation of Cdc25A phosphatase is an ubiquitous feature of stress. There are some discrepancies in the reported roles for different phosphorylation sites in the regulation of Cdc25A stability. Using a panel of doxycycline-inducible phosphorylation mutants we show that the stability of human Cdc25A protein is dependent upon phosphorylation at S75. In non-stressed conditions and in non-mitotic cells, Cdc25A is unstable and its stability is regulated in a Chk1-dependent manner. During mitosis, Cdc25A becomes stable and does not undergo degradation after DNA damage. We further show that Chk1 kinase regulates Cdc25A stability after UV irradiation. Similar to Chk1 kinase, p38 MAPK controls Cdc25A protein level after osmotic stress. Using phospho-specific antibodies, we find that both kinases can phosphorylate S75 and S123 in vitro. Inactivation of either Chk1 after UV-irradiation or p38 MAPK after osmotic stress prevents activation of a S phase checkpoint and S75 and S123 phosphorylation. However, introduction of stable Cdc25A (S75A or S75/123A) proteins is not sufficient to overcome this checkpoint. We propose that regulation of human Cdc25A stability by its phosphorylation at S75 may contribute to S phase checkpoint activation only in cooperation with other regulatory mechanisms.  相似文献   
5.
A mechanism of apoptotic death of normal rat embryo fibroblasts and of those transformed by E1A + cHa-Ras oncogenes following gamma irradiation has been investigated. The E1A + cHa-Ras transformed cells were shown to express wild type p53 which was able to trans-activate a reporter pG13-luc Plasmid. As a result of trans-activation, an accumulation of universal inhibitor of cyclin-dependent kinases--p21/Waf1 protein and an increase in the proportion of p21/Waf1 expressing cells were observed, The accumulated p21/Waf1 was found to bind with PCNA. The association with PCNA, however, did not lead to suppression of DNA replication according to the data of iododeoxyuridine (IdUr) incorporation. A high proportion of S-phase cells, in combination with cell cycle blocking in G2-phase, promoted polyploidization of E1A + cHa-Ras transformed cells after gamma irradiation. The polyploidic cells with DNA content equal and higher than 8c die 48-72 h following irradiation due to apoptosis. A significant proportion of E1A + cHa-Ras cells with incorporated IdUr contains labeled micronuclei, the fact being a morphological evidence of apoptosis of cells in S-phase of the cell cycle.  相似文献   
6.
The cell division cycle 25A (Cdc25A) phosphatase is a critical regulator of cell cycle progression under normal conditions and after stress. Stress-induced degradation of Cdc25A has been proposed as a major way of delaying cell cycle progression. In vitro studies pointed toward serine 123 as a key site in regulation of Cdc25A stability after exposure to ionizing radiation (IR). To address the role of this phosphorylation site in vivo, we generated a knock-in mouse in which alanine was substituted for serine 123. The Cdc25 S123A knock-in mice appeared normal, and, unexpectedly, cells derived from them exhibited unperturbed cell cycle and DNA damage responses. In turn, we found that Cdc25A was present in centrosomes and that Cdc25A levels were not reduced after IR in knock-in cells. This resulted in centrosome amplification due to lack of induction of Cdk2 inhibitory phosphorylation after IR specifically in centrosomes. Further, Cdc25A knock-in animals appeared sensitive to IR-induced carcinogenesis. Our findings indicate that Cdc25A S123 phosphorylation is crucial for coupling centrosome duplication to DNA replication cycles after DNA damage and therefore is likely to play a role in the regulation of tumorigenesis.  相似文献   
7.
Spherical and cylindrical water droplets on silicon surface are studied to tune the silicon–oxygen interaction. We use molecular dynamics simulations to estimate the contact angle of two different shaped droplets. We found that the cylindrical droplets are independent of the line tension as their three phases curvature is equal zero. Additionally, we compare an analytical model, taking into account or not the Tolman length and we show that for spherical small size droplets, this length is important to be included, in contrast to cylindrical droplets in which the influence of the Tolman length is negligible. We demonstrate that the usual convenient way to exclude linear tension in the general case can give wrong results. Here, we consider cylindrical droplets, since their contact angle does not depend on the droplet size in the range of few to 10ths of nanometres. The droplets are stabilised due to the periodic boundary conditions. This allows us to propose a new parameterisation for nanoscale droplets, which is independent the size of the droplets or its shape, minimising at the same time the calculation procedure. With the proposed methodology, we can extract the epsilon parameter of the interaction potential between a liquid and a solid from the nanoscaled molecular simulation with only as input the macrosized experimental wetting angle for a given temperature.  相似文献   
8.
The results of exhaustive quantum-mechanical conformational analysis of 1,2-dideoxyribofuranose-5-phosphate molecule, the model DNA backbone structural unit, are presented. As many as 282 conformations with the relative Gibbs energies from 0 to 8.9 kcal/mole have been obtained at the MP2/cc-pVTZ // DFT B3LYP/cc-pVTZ theory level. Among them seven structures are similar to those of the DNA backbone in its AI, BI and ZII forms, while the B-DNA-like conformation has the lowest Gibbs energy (deltaG = 3.3 kcal/mole). It is shown that the relaxed force constants values for conformational parameters of all DNA-like conformations satisfy inequality K gamma > K alpha > K epsilon > K beta.  相似文献   
9.
Quantitative characteristics of structural flexibility of the DNA elementary monomer units -5'-deoxycytidylic, 5'-thymidylic, 5'-deoxyadenylic and 5'-deoxyguanylic acid molecules--have been calculated with original methods. Root-mean-square deviations from equilibrium for all conformational parameters, caused by nuclei thermal or quantum zero-point vibrations, have been found to lie within 4 degrees divided by 25 degrees at 0 K and 7 degrees divided by 50 degrees at 298 K and corresponding relaxed force constants--within 1 divided by 35 kcal/mol x rad(-2). Their values have been found to be sensitive to the molecule's conformation. It has been proven, that the torsion angle gamma is the most rigid one whereas relaxed force constants for all other conformational variables are lower and comparable to each other. The data obtained could serve for development of structural-dynamical models of the DNA.  相似文献   
10.
Introduction of the E1A early region of the human adenovirus type 5 impairs the ability of mammalian cells to stop in the cell cycle at G1/S after damage. Two-parameter fluorescence cell sorting with iododeoxyuridine revealed the radiation-induced G1/S arrest in rat embryo fibroblasts transformed with the complementing E1A and E1B-19kDa oncogenes. This was due to selective inhibition of CyclE/Cdk2-associated kinase activity, while activities of type 2 kinase and of CyclA/Cdk2 complexes remained unchanged. The inhibitor of G1-phase cyclin kinases, p21/Waf1, was accumulated and interacted with target kinases both in normal and in transformed cells after irradiation. As shown by immunoprecipitation, p21/Waf1 formed complexes with the E1A oncoproducts in the transformants, which possibly accounted for its functional inactivation. Kinase modification in cyclin–kinase complexes was assumed to play a key role in regulation of cyclin-dependent kinases in the transformants with inactivated p21/Waf1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号