排序方式: 共有55条查询结果,搜索用时 46 毫秒
1.
Aravinthan DT Samuel Venkatesh N Murthy Michael O Hengartner 《BMC developmental biology》2001,1(1):8-6
Background
Of the animals typically used to study fertilization-induced calcium dynamics, none is as accessible to genetics and molecular biology as the model organism Caenorhabditis elegans. Motivated by the experimental possibilities inherent in using such a well-established model organism, we have characterized fertilization-induced calcium dynamics in C. elegans.Results
Owing to the transparency of the nematode, we have been able to study the calcium signal in C. elegans fertilization in vivo by monitoring the fluorescence of calcium indicator dyes that we introduce into the cytosol of oocytes. In C. elegans, fertilization induces a single calcium transient that is initiated soon after oocyte entry into the spermatheca, the compartment that contains sperm. Therefore, it is likely that the calcium transient is initiated by contact with sperm. This calcium elevation spreads throughout the oocyte, and decays monotonically after which the cytosolic calcium concentration returns to that preceding fertilization. Only this single calcium transient is observed.Conclusion
Development of a technique to study fertilization induced calcium transients opens several experimental possibilities, e.g., identification of the signaling events intervening sperm binding and calcium elevation, identifying the possible roles of the calcium elevation such as the completion of meiosis, the formation of the eggshell, and the establishing of the embryo's axis of symmetry. 相似文献2.
Direct sequencing of the mitochondrial displacement loop (D-loop) of shrews
(genus Sorex) for the region between the tRNA(Pro) and the conserved
sequence block-F revealed variable numbers of 79-bp tandem repeats. These
repeats were found in all 19 individuals sequenced, representing three
subspecies and one closely related species of the masked shrew group (Sorex
cinereus cinereus, S. c. miscix, S. c. acadicus, and S. haydeni) and an
outgroup, the pygmy shrew (S. hoyi). Each specimen also possessed an
adjacent 76-bp imperfect copy of the tandem repeats. One individual was
heteroplasmic for length variants consisting of five and seven copies of
the 79-bp tandem repeat. The sequence of the repeats is conducive to the
formation of secondary structure. A termination-associated sequence is
present in each of the repeats and in a unique sequence region 5' to the
tandem array as well. Mean genetic distance between the masked shrew taxa
and the pygmy shrew was calculated separately for the unique sequence
region, one of the tandem repeats, the imperfect repeat, and these three
regions combined. The unique sequence region evolved more rapidly than the
tandem repeats or the imperfect repeat. The small genetic distance between
pairs of tandem repeats within an individual is consistent with a model of
concerted evolution. Repeats are apparently duplicated and lost at a high
rate, which tends to homogenize the tandem array. The rate of D- loop
sequence divergence between the masked and pygmy shrews is estimated to be
15%-20%/Myr, the highest rate observed in D-loops of mammals. Rapid
sequence evolution in shrews may be due either to their high metabolic rate
and short generation time or to the presence of variable numbers of tandem
repeats.
相似文献
3.
The distribution of amiloride-sensitive sodium channels (ASSCs) in taste
buds isolated from the oral cavity of hamsters was assessed by patch clamp
recording. In contrast to the case for rats, taste cells from the
fungiform, foliate and vallate papillae and from the soft palate all
contain functional ASSCs. The differential distribution of ASSCs between
the hamster and the rat may be important for understanding the physiology
underlying the differing behavioral responses of these species to sodium
salts.
相似文献
4.
5.
M Pogorzelski S Ting T C Gauler F Breitenbuecher I Vossebein S Hoffarth J Markowetz S Lang C Bergmann S Brandau J A Jawad K W Schmid M Schuler S Kasper 《Cell death & disease》2014,5(2):e1091
Infection with human papillomaviruses (HPVs) characterizes a distinct subset of head and neck squamous cell cancers (HNSCCs). HPV-positive HNSCC preferentially affect the oropharynx and tonsils. Localized HPV-positive HNSCCs have a favorable prognosis and treatment outcome. However, the impact of HPV in advanced or metastatic HNSCC remains to be defined. In particular, it is unclear whether HPV modulates the response to cetuximab, an antibody targeting the epidermal growth factor receptor (EGFR), which is a mainstay of treatment of advanced HNSCC. To this end, we have examined the sensitivity of HPV-positive and -negative HNSCC models to cetuximab and cytotoxic drugs in vitro and in vivo. In addition, we have stably expressed the HPV oncogenes E6 and E7 in cetuximab-sensitive cancer cell lines to specifically investigate their role in the antibody response. The endogenous HPV status or the expression of HPV oncogenes had no significant impact on cetuximab-mediated suppression of EGFR signaling and proliferation in vitro. Cetuximab effectively inhibited the growth of E6- and E7-expressing tumors grafted in NOD/SCID mice. In support, formalin-fixed, paraffin-embedded tumor samples from cetuximab-treated patients with recurrent or metastatic HNSCC were probed for p16INK4a expression, an established biomarker of HPV infection. Response rates (45.5% versus 45.5%) and median progression-free survival (97 versus 92 days) following cetuximab-based therapy were similar in patients with p16INK4A-positive and p16INK4A-negative tumors. In conclusion, HPV oncogenes do not modulate the anti-EGFR antibody response in HSNCC. Cetuximab treatment should be administered independently of HPV status. 相似文献
6.
D T Brandau P Ray A S Stern R V Lewis 《International journal of peptide and protein research》1985,25(3):238-241
We have isolated a previously unknown peptide and its precursor from bovine adrenal medullary chromaffin granules. The peptide sequence is Leu-Pro-Val-Asn-Ser-Pro-Met-Asn-Lys-Gly-Asn-Glu-Val-Met-Lys. The peptide is cleaved from the precursor at a Lys site. The sequence shows no homology to any known protein in the largest sequence data bank available. 相似文献
7.
Wittkowski M Mittelstädt J Brandau S Reiling N Lindner B Torrelles J Brennan PJ Holst O 《The Journal of biological chemistry》2007,282(26):19103-19112
The capsules of two colony morphotypes of Mycobacterium avium strain 2151 were investigated, i.e. the virulent smooth-transparent (SmT1) and the nonvirulent smooth-opaque (SmO) types. From both morphotypes we separated a nonacylated arabinomannan (AM) from an acylated polysaccharide fraction by affinity chromatography, of which the AMs were structurally characterized. The AMs from the virulent morphotype, in contrast to that from the nonvirulent form, possessed a larger mannan chain and a shorter arabinan chain. Incubation of murine bone marrow-derived macrophages and human dendritic cells showed that the acylated polysaccharide fractions were potent inducers of tumor necrosis factor-alpha, interleukin-12, and interleukin-10 compared with nonacylated AMs, which led to only a marginal cytokine release. Further in vitro experiments showed that both the acylated polysaccharide fractions and the nonacylated AMs were able to induce in vitro anti-tumor cytotoxicity of human peripheral blood mononuclear cells. Thus, morphotype-specific structural differences in the capsular AMs of M. avium do not correlate with biological activity; however, their acylation is a prerequisite for effective stimulation of murine macrophages and human dendritic cells. 相似文献
8.
9.
10.
High voltage-activated (HVA) Cav channels form complexes with KCa1.1 channels, allowing reliable activation of KCa1.1 current through a nanodomain interaction. We recently found that low voltage-activated Cav3 calcium channels also create KCa1.1-Cav3 complexes. While coimmunoprecipitation studies again supported a nanodomain interaction, the sensitivity to calcium chelating agents was instead consistent with a microdomain interaction. A computational model of the KCa1.1-Cav3 complex suggested that multiple Cav3 channels were necessary to activate KCa1.1 channels, potentially causing the KCa1.1-Cav3 complex to be more susceptible to calcium chelators. Here, we expanded the model and compared it to a KCa1.1-Cav2.2 model to examine the role of Cav channel conductance and kinetics on KCa1.1 activation. As found for direct recordings, the voltage-dependent and kinetic properties of Cav3 channels were reflected in the activation of KCa1.1 current, including transient activation from lower voltages than other KCa1.1-Cav complexes. Substantial activation of KCa1.1 channels required the concerted activity of several Cav3.2 channels. Combined with the effect of EGTA, these results suggest that the Ca2+ domains of several KCa1.1-Cav3 complexes need to cooperate to generate sufficient [Ca2+]i, despite the physical association between KCa1.1 and Cav3 channels. By comparison, Cav2.2 channels were twice as effective at activating KCa1.1 channels and a single KCa1.1-Cav2.2 complex would be self-sufficient. However, even though Cav3 channels generate small, transient currents, the regulation of KCa1.1 activity by Cav3 channels is possible if multiple complexes cooperate through microdomain interactions. 相似文献