排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
R Loganathan L Novikova IG Boulatnikov IV Smirnova 《Journal of applied physiology (Bethesda, Md. : 1985)》2012,113(5):817-826
One of the fundamental biochemical defects underlying the complications of diabetic cardiovascular system is elevation of diacylglycerol (DAG) and its effects on protein kinase C (PKC) signaling. It has been noted that exercise training attenuates poor cardiac performance in Type 1 diabetes. However, the role of PKC signaling in exercise-induced alleviation of cardiac abnormalities in diabetes is not clear. We investigated the possibility that exercise training modulates PKC-βII signaling to elicit its beneficial effects on the diabetic heart. bio-breeding diabetic resistant rats, a model reminiscent of Type 1 diabetes in humans, were randomly assigned to four groups: 1) nonexercised nondiabetic (NN); 2) nonexercised diabetic (ND); 3) exercised nondiabetic; and 4) exercised diabetic. Treadmill training was initiated upon the onset of diabetes. At the end of 8 wk, left ventricular (LV) hemodynamic assessment revealed compromised function in ND compared with the NN group. LV myocardial histology revealed increased collagen deposition in ND compared with the NN group, while electron microscopy showed a reduction in the viable mitochondrial fraction. Although the PKC-βII levels and activity were unchanged in the diabetic heart, the DAG levels were increased. With exercise training, the deterioration of LV structure and function in diabetes was attenuated. Notably, improved cardiac performance in training was associated with a decrease in myocardial DAG levels in diabetes. Exercise-induced benefits on cardiac performance in diabetes may be mediated by prevention of an increase in myocardial DAG levels. 相似文献
2.
AV Shevchenko IG Budzanivska TP Shevchenko VP Polischuk D Spaar 《Archives Of Phytopathology And Plant Protection》2013,46(2):139-146
The work was focused on the investigation of possible dependencies between the development of viral infection in plants and the presence of high heavy metal concentrations in soil. Field experiments have been conducted in order to study the development of systemic tobacco mosaic virus (TMV) infection in Lycopersicon esculentum L. cv. Miliana plants under effect of separate salts of heavy metals Cu, Zn and Pb deposited in soil. As it is shown, simultaneous effect of viral infection and heavy metals in tenfold maximum permissible concentration leads to decrease of total chlorophyll content in experiment plants mainly due to the degradation of chlorophyll a. The reduction of chlorophyll concentration under the combined influence of both stress factors was more serious comparing to the separate effect of every single factor. Plants' treatment with toxic concentrations of lead and zinc leaded to slight delay in the development of systemic TMV infection together with more than twofold increase of virus content in plants that may be an evidence of synergism between these heavy metal's and virus' effects. Contrary, copper although decreased total chlorophyll content but showed protective properties and significantly reduced amount of virus in plants. 相似文献
3.
Tandon C De Lisle RC Boulatnikov I Naik PK 《Molecular and cellular biochemistry》2007,302(1-2):157-167
The C-terminal PDZ-binding motifs are required for polarized apical/basolateral localization of many membrane proteins. Ezrin–radixin–moesin
(ERM) proteins regulate the organization and function of specific cortical structures in polarized epithelial cells by connecting
filamentous (F)-actin to plasma membrane proteins through EBP50. Previous work showed that the membrane phosphoprotein apactin
(an 80-kDa type I membrane protein derived from pro-Muclin) is associated with the acinar cell apical actin cytoskeleton and
that this association is modulated by changes in the phosphorylation state of the apactin cytosolic tail. The carboxyl-terminal
amino acids of apactin (–STKL–COOH) are predicted to form a type I PDZ-binding domain, similar to that of CFTR (–DTRL–COOH).
Pairwise sequence comparison between NHERF/EBP50 and PDZK1/CAP70 PDZ domains reveals significant identity among the 83 amino-acid
residues (12–92) of EBP50 and CAP70 (241–323), which are involved in the interaction with the carboxyl-terminal peptides (STKL–COOH
and phosphomimetics) of apactin. Hence, the specificity and affinity of interactions are identical between them, which is
corroborated with the two hybrid results. Substitution of all the four-carboxyl-terminal amino acids in the wild type to Ala
reduces the interaction. Only the carbonyl oxygen and amide nitrogen of Ala are found to be involved in hydrogen bonding.
Further, truncation of the wild carboxyl-terminal peptide to RGQPP–COOH, showed very low affinity of interaction with PDZ1
domain. Only the atom Oε1 of Gln-2 hydrogen bonds with Nε2 of His72 of PDZ domain. Ser-3 amino acid in wild type apactin protein (STKL–COOH) is not involved in hydrogen bonding with
PDZ1 domain. However, substitution of Ser-3 to Asp-3 in PDTKL–COOH peptide increases the affinity of interaction of PDTKL–COOH
with PDZ1 domain. Thus, carboxyl-terminal Asp(D) -3, Thr(T) -2, Lys(K) -1 and Leu(L) 0 are involved in numerous interactions
with PDZ1 domains of NHERF/EBP50 and PDZK1/CAP70. 相似文献
4.
Benjamin Stich Bettina IG Haussmann Raj Pasam Sankalp Bhosale C Tom Hash Albrecht E Melchinger Heiko K Parzies 《BMC plant biology》2010,10(1):216
Background
The distribution area of pearl millet in West and Central Africa (WCA) harbours a wide range of climatic and environmental conditions as well as diverse farmer preferences and pearl millet utilization habits which have the potential to lead to local adaptation and thereby to population structure. The objectives of our research were to (i) assess the geographical distribution of genetic diversity in pearl millet inbreds derived from landraces, (ii) assess the population structure of pearl millet from WCA, and (iii) identify those geographical parameters and environmental factors from the location at which landraces were sampled, as well as those phenotypic traits that may have affected or led to this population structure. Our study was based on a set of 145 inbred lines derived from 122 different pearl millet landraces from WCA. 相似文献5.
Quang-Kim Tran Jared Leonard D. J. Black Owen W. Nadeau Igor G. Boulatnikov Anthony Persechini 《The Journal of biological chemistry》2009,284(18):11892-11899
We have investigated the possible biochemical basis for enhancements in NO
production in endothelial cells that have been correlated with agonist- or
shear stress-evoked phosphorylation at Ser-1179. We have found that a
phosphomimetic substitution at Ser-1179 doubles maximal synthase activity,
partially disinhibits cytochrome c reductase activity, and lowers the
EC50(Ca2+) values for calmodulin binding and enzyme
activation from the control values of 182 ± 2 and 422 ± 22
nm to 116 ± 2 and 300 ± 10 nm. These are
similar to the effects of a phosphomimetic substitution at Ser-617 (Tran, Q.
K., Leonard, J., Black, D. J., and Persechini, A. (2008) Biochemistry
47, 7557–7566). Although combining substitutions at Ser-617 and Ser-1179
has no additional effect on maximal synthase activity, cooperativity between
the two substitutions completely disinhibits reductase activity and further
reduces the EC50(Ca2+) values for calmodulin binding and
enzyme activation to 77 ± 2 and 130 ± 5 nm. We have
confirmed that specific Akt-catalyzed phosphorylation of Ser-617 and Ser-1179
and phosphomimetic substitutions at these positions have similar functional
effects. Changes in the biochemical properties of eNOS produced by combined
phosphorylation at Ser-617 and Ser-1179 are predicted to substantially
increase synthase activity in cells at a typical basal free Ca2+
concentration of 50–100 nm.The nitric-oxide synthases catalyze formation of NO and
l-citrulline from l-arginine and O2, with
NADPH as the electron donor
(1). The role of NO generated
by endothelial nitricoxide synthase
(eNOS)2 in the
regulation of smooth muscle tone is well established and was the first of
several physiological roles for this small molecule that have so far been
identified (2). The
nitric-oxide synthases are homodimers of 130–160-kDa subunits. Each
subunit contains a reductase and oxygenase domain
(1). A significant difference
between the reductase domains in eNOS and nNOS and the homologous P450
reductases is the presence of inserts in these synthase isoforms that appear
to maintain them in their inactive states
(3,
4). A calmodulin (CaM)-binding
domain is located in the linker that connects the reductase and oxygenase
domains, and the endothelial and neuronal synthases both require
Ca2+ and exogenous CaM for activity
(5,
6). When CaM is bound, it
somehow counteracts the effects of the autoinhibitory insert(s) in the
reductase. The high resolution structure for the complex between
(Ca2+)4-CaM and the isolated CaM-binding domain from
eNOS indicates that the C-ter and N-ter lobes of CaM, which each contain a
pair of Ca2+-binding sites, enfold the domain, as has been observed
in several other such CaM-peptide complexes
(7). Consistent with this
structure, investigations of CaM-dependent activation of the neuronal synthase
suggest that both CaM lobes must participate
(8,
9).Bovine eNOS can be phosphorylated in endothelial cells at Ser-116, Thr-497,
Ser-617, Ser-635, and Ser-1179
(10–12).
There are equivalent phosphorylation sites in the human enzyme
(10–12).
Phosphorylation of the bovine enzyme at Thr-497, which is located in the
CaM-binding domain, blocks CaM binding and enzyme activation
(7,
11,
13,
14). Ser-116 can be basally
phosphorylated in cells (10,
11,
13,
15), and dephosphorylation of
this site has been correlated with increased NO production
(13,
15). However, it has also been
reported that a phosphomimetic substitution at this position has no effect on
enzyme activity measured in vitro
(13). Ser-1179 is
phosphorylated in response to a variety of stimuli, and this has been reliably
correlated with enhanced NO production in cells
(10,
11). Indeed, NO production is
elevated in transgenic endothelium expressing an eNOS mutant containing an
S1179D substitution, but not in tissue expressing an S1179A mutant
(16). Shear stress or insulin
treatment is correlated with Akt-catalyzed phosphorylation of Ser-1179 in
endothelial cells, and this is correlated with increased NO production in the
absence of extracellular Ca2+
(17–19).
Akt-catalyzed phosphorylation or an S1179D substitution has also been
correlated with increased synthase activity in cell extracts at low
intracellular free [Ca2+]
(17). Increased NO production
has also been observed in cells expressing an eNOS mutant containing an S617D
substitution, and physiological stimuli such as shear-stress, bradykinin,
VEGF, and ATP appear to stimulate Akt-catalyzed phosphorylation of Ser-617 and
Ser-1179 (12,
13,
20). Although S617D eNOS has
been reported to have the same maximum activity in vitro as the wild
type enzyme (20), in our hands
an S617D substitution increases the maximal CaM-dependent synthase activity of
purified mutant enzyme ∼2-fold, partially disinhibits reductase activity,
and reduces the EC50(Ca2+) values for CaM binding and
enzyme activation (21).In this report, we describe the effects of a phosphomimetic Asp
substitution at Ser-1179 in eNOS on the Ca2+ dependence of CaM
binding and CaM-dependent activation of reductase and synthase activities. We
also describe the effects on these properties of combining this substitution
with one at Ser-617. Finally, we demonstrate that Akt-catalyzed
phosphorylation and Asp substitutions at Ser-617 and Ser-1179 have similar
functional effects. Our results suggest that phosphorylation of eNOS at
Ser-617 and Ser-1179 can substantially increase synthase activity in cells at
a typical basal free Ca2+ concentration of 50–100
nm, while single phosphorylations at these sites produce smaller
activity increases, and can do so only at higher free Ca2+
concentrations. 相似文献
6.
7.
Margarethe Biong Inger T Gram Ilene Brill Fredrik Johansen Hiroko K Solvang Grethe IG Alnaes Toril Fagerheim Yngve Bremnes Stephen J Chanock Laurie Burdett Meredith Yeager Giske Ursin Vessela N Kristensen 《BMC medical genomics》2010,3(1):1-13
Background
Chronic inflammatory diseases including inflammatory bowel disease (IBD; Crohn's disease and ulcerative colitis), psoriasis and rheumatoid arthritis (RA) afflict millions of people worldwide, but their pathogenesis is still not well understood. It is also not well known if distinct changes in gene expression characterize these diseases and if these patterns can discriminate between diseased and control patients and/or stratify the disease. The main focus of our work was the identification of novel markers that overlap among the 3 diseases or discriminate them from each other.Methods
Diseased (n = 13, n = 15 and n = 12 in IBD, psoriasis and RA respectively) and healthy patients (n = 18) were recruited based on strict inclusion and exclusion criteria; peripheral blood samples were collected by clinicians (30 ml) in Venous Blood Vacuum Collection Tubes containing EDTA and peripheral blood mononuclear cells were separated by Ficoll gradient centrifugation. RNA was extracted using Trizol reagent. Gene expression data was obtained using TaqMan Low Density Array (TLDA) containing 96 genes that were selected by an algorithm and the statistical analyses were performed in Prism by using non-parametric Mann-Whitney U test (P-values < 0.05).Results
Here we show that using a panel of 96 disease associated genes and measuring mRNA expression levels in peripheral blood derived mononuclear cells; we could identify disease-specific gene panels that separate each disease from healthy controls. In addition, a panel of five genes such as ADM, AQP9, CXCL2, IL10 and NAMPT discriminates between all samples from patients with chronic inflammation and healthy controls. We also found genes that stratify the diseases and separate different subtypes or different states of prognosis in each condition.Conclusions
These findings and the identification of five universal markers of chronic inflammation suggest that these diseases have a common background in pathomechanism, but still can be separated by peripheral blood gene expression. Importantly, the identified genes can be associated with overlapping biological processes including changed inflammatory response. Gene panels based on such markers can play a major role in the development of personalized medicine, in monitoring disease progression and can lead to the identification of new potential drug targets in chronic inflammation. 相似文献8.
Boulatnikov IG Nadeau OW Daniels PJ Sage JM Jeyasingham MD Villar MT Artigues A Carlson GM 《Biochemistry》2008,47(27):7228-7236
Skeletal muscle phosphorylase kinase (PhK) is an (alphabetagammadelta) 4 hetero-oligomeric enzyme complex that phosphorylates and activates glycogen phosphorylase b (GP b) in a Ca (2+)-dependent reaction that couples muscle contraction with glycogen breakdown. GP b is PhK's only known in vivo substrate; however, given the great size and multiple subunits of the PhK complex, we screened muscle extracts for other potential targets. Extracts of P/J (control) and I/lnJ (PhK deficient) mice were incubated with [gamma- (32)P]ATP with or without Ca (2+) and compared to identify potential substrates. Candidate targets were resolved by two-dimensional polyacrylamide gel electrophoresis, and phosphorylated glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was identified by matrix-assisted laser desorption ionization mass spectroscopy. In vitro studies showed GAPDH to be a Ca (2+)-dependent substrate of PhK, although the rate of phosphorylation is very slow. GAPDH does, however, bind tightly to PhK, inhibiting at low concentrations (IC 50 approximately 0.45 microM) PhK's conversion of GP b. When a short synthetic peptide substrate was substituted for GP b, the inhibition was negligible, suggesting that GAPDH may inhibit predominantly by binding to the PhK complex at a locus distinct from its active site on the gamma subunit. To test this notion, the PhK-GAPDH complex was incubated with a chemical cross-linker, and a dimer between the regulatory beta subunit of PhK and GAPDH was formed. This interaction was confirmed by the fact that a subcomplex of PhK missing the beta subunit, specifically an alphagammadelta subcomplex, was unable to phosphorylate GAPDH, even though it is catalytically active toward GP b. Moreover, GAPDH had no effect on the conversion of GP b by the alphagammadelta subcomplex. The interactions described herein between the beta subunit of PhK and GAPDH provide a possible mechanism for the direct linkage of glycogenolysis and glycolysis in skeletal muscle. 相似文献
9.
Sorting and packaging of regulated secretory proteins involves protein aggregation in the trans-Golgi network and secretory granules. In this work, we characterized the pH-dependent interactions of pancreatic acinar cell-regulated secretory proteins (zymogens) with Muclin, a putative Golgi cargo receptor. In solution, purified Muclin co-aggregated with isolated zymogens at mildly acidic pH. In an overlay assay, [35S]sulfate biosynthetically labeled Muclin bound directly at mildly acidic pH to the zymogen granule content proteins amylase, prolipase, pro-carboxypeptidase A1, pro-elastase II, chymotrypsinogen B, and Reg1. Denaturation of Muclin with reducing agents to break the numerous intrachain disulfide bonds in Muclin's scavenger receptor cysteine-rich and CUB domains did not interfere with binding. Non-sulfated [35S]Met/Cys-labeled Muclin showed decreased binding in the overlay assay. Extensive Pronase E digestion of unlabeled Muclin was used to produce glycopeptides, which competed for binding of [35S]sulfate-labeled Muclin to zymogens. The results demonstrate that the sulfated, O-glycosylated groups are responsible for the pH-dependent interactions of Muclin with the zymogens. The behavior of Muclin fulfils the requirement of a Golgi cargo receptor to bind to regulated secretory proteins under the mildly acidic pH conditions that exist in the trans-Golgi network. 相似文献
1