首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   17篇
  127篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   7篇
  2013年   4篇
  2012年   9篇
  2011年   8篇
  2010年   9篇
  2009年   3篇
  2008年   3篇
  2007年   5篇
  2006年   1篇
  2005年   4篇
  2004年   7篇
  2003年   4篇
  2002年   3篇
  2001年   6篇
  2000年   10篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   7篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   5篇
  1990年   2篇
  1989年   1篇
排序方式: 共有127条查询结果,搜索用时 15 毫秒
1.
2.
3.
Supramolecular organization of enzymes is proposed to orchestrate metabolic complexity and help channel intermediates in different pathways. Phenylpropanoid metabolism has to direct up to 30% of the carbon fixed by plants to the biosynthesis of lignin precursors. Effective coupling of the enzymes in the pathway thus seems to be required. Subcellular localization, mobility, protein–protein, and protein–membrane interactions of four consecutive enzymes around the main branch point leading to lignin precursors was investigated in leaf tissues of Nicotiana benthamiana and cells of Arabidopsis thaliana. CYP73A5 and CYP98A3, the two Arabidopsis cytochrome P450s (P450s) catalyzing para- and meta-hydroxylations of the phenolic ring of monolignols were found to colocalize in the endoplasmic reticulum (ER) and to form homo- and heteromers. They moved along with the fast remodeling plant ER, but their lateral diffusion on the ER surface was restricted, likely due to association with other ER proteins. The connecting soluble enzyme hydroxycinnamoyltransferase (HCT), was found partially associated with the ER. Both HCT and the 4-coumaroyl-CoA ligase relocalized closer to the membrane upon P450 expression. Fluorescence lifetime imaging microscopy supports P450 colocalization and interaction with the soluble proteins, enhanced by the expression of the partner proteins. Protein relocalization was further enhanced in tissues undergoing wound repair. CYP98A3 was the most effective in driving protein association.  相似文献   
4.
In angiosperms, lignin is built from two main monomers, coniferyl and sinapyl alcohol, which are incorporated respectively as G and S units in the polymer. The last step of their synthesis has so far been considered to be performed by a family of dimeric cinnamyl alcohol dehydrogenases (CAD2). However, previous studies on Eucalyptus gunnii xylem showed the presence of an additional, structurally unrelated, monomeric CAD form named CAD1. This form reduces coniferaldehyde to coniferyl alcohol, but is inactive on sinapaldehyde. In this paper, we report the functional characterization of CAD1 in tobacco (Nicotiana tabacum L.). Transgenic tobacco plants with reduced CAD1 expression were obtained through an RNAi strategy. These plants displayed normal growth and development, and detailed biochemical studies were needed to reveal a role for CAD1. Lignin analyses showed that CAD1 down-regulation does not affect Klason lignin content, and has a moderate impact on G unit content of the non-condensed lignin fraction. However, comparative metabolic profiling of the methanol-soluble phenolic fraction from basal xylem revealed significant differences between CAD1 down-regulated and wild-type plants. Eight compounds were less abundant in CAD1 down-regulated lines, five of which were identified as dimers or trimers of monolignols, each containing at least one moiety derived from coniferyl alcohol. In addition, 3-trans-caffeoyl quinic acid accumulated in the transgenic plants. Together, our results support a significant contribution of CAD1 to the synthesis of coniferyl alcohol in planta, along with the previously characterized CAD2 enzymes. Sequences of NtCAD1-1 and NtCAD1-7 were deposited in GenBank under accession numbers AY911854 and AY911855, respectively.  相似文献   
5.
Lignin is an aromatic heteropolymer, abundantly present in the walls of secondary thickened cells. Although much research has been devoted to the structure and composition of the polymer to obtain insight into lignin polymerization, the low-molecular weight oligolignol fraction has escaped a detailed characterization. This fraction, in contrast to the rather inaccessible polymer, is a simple and accessible model that reveals details about the coupling of monolignols, an issue that has raised considerable controversy over the past years. We have profiled the methanol-soluble oligolignol fraction of poplar (Populus spp.) xylem, a tissue with extensive lignification. Using liquid chromatography-mass spectrometry, chemical synthesis, and nuclear magnetic resonance, we have elucidated the structures of 38 compounds, most of which were dimers, trimers, and tetramers derived from coniferyl alcohol, sinapyl alcohol, their aldehyde analogs, or vanillin. All structures support the recently challenged random chemical coupling hypothesis for lignin polymerization. Importantly, the structures of two oligomers, each containing a gamma-p-hydroxybenzoylated syringyl unit, strongly suggest that sinapyl p-hydroxybenzoate is an authentic precursor for lignin polymerization in poplar.  相似文献   
6.
Poplar has become a model system for functional genomics in woody plants. Here, we report the sequencing and annotation of the first large contiguous stretch of genomic sequence (95 kb) of poplar, corresponding to a bacterial artificial chromosome clone mapped 0.6 centiMorgan from the Melampsora larici-populina resistance locus. The annotation revealed 15 putative genetic objects, of which five were classified as hypothetical genes that were similar only with expressed sequence tags from poplar. Ten putative objects showed similarity with known genes, of which one was similar to a kinase. Three other objects corresponded to the toll/interleukin-1 receptor/nucleotide-binding site/leucine-rich repeat class of plant disease resistance genes, of which two were predicted to encode an amino terminal nuclear localization signal. Four objects were homologous to the Ty1/copia family of class I transposable elements, one of which was designated Retropop and interrupted one of the disease resistance genes. Two other objects constituted a novel Spm-like class II transposable element, which we designated Magali.M.L. and S.R. contributed equally to this article  相似文献   
7.
Unravelling cell wall formation in the woody dicot stem   总被引:20,自引:0,他引:20  
Populus is presented as a model system for the study of wood formation (xylogenesis). The formation of wood (secondary xylem) is an ordered developmental process involving cell division, cell expansion, secondary wall deposition, lignification and programmed cell death. Because wood is formed in a variable environment and subject to developmental control, xylem cells are produced that differ in size, shape, cell wall structure, texture and composition. Hormones mediate some of the variability observed and control the process of xylogenesis. High-resolution analysis of auxin distribution across cambial region tissues, combined with the analysis of transgenic plants with modified auxin distribution, suggests that auxin provides positional information for the exit of cells from the meristem and probably also for the duration of cell expansion. Poplar sequencing projects have provided access to genes involved in cell wall formation. Genes involved in the biosynthesis of the carbohydrate skeleton of the cell wall are briefly reviewed. Most progress has been made in characterizing pectin methyl esterases that modify pectins in the cambial region. Specific expression patterns have also been found for expansins, xyloglucan endotransglycosylases and cellulose synthases, pointing to their role in wood cell wall formation and modification. Finally, by studying transgenic plants modified in various steps of the monolignol biosynthetic pathway and by localizing the expression of various enzymes, new insight into the lignin biosynthesis in planta has been gained.  相似文献   
8.
Various oxygen tensions are employed for in vitro embryo production. Since it is known that oxygen tension can influence the efficiency of embryo production and embryo quality, the aim of our study was to define an optimal oxygen concentration for bovine embryo production in vitro in synthetic oviduct fluid (SOF). Embryo quality criteria were hatching ability and the degree of apoptosis as assessed by TUNEL staining and Bax gene expression. In Experiment 1, the effects of 2, 5 and 20% O(2) tensions on embryo development were compared. The highest rate of eight-cell embryos (47%) at 72 hpi was obtained under 20% O(2). However, it seemed that 2 and 5% O(2) were also suitable as assessed by embryo survival rates at 144 hpi (29 and 30% at morula stage), 168 hpi (21 and 19% at blastocyst stage) and 216 hpi (14 and 17% at hatched blastocyst stage). In Experiment 2, comparisons were made between effects of 5, 20% and alternating O(2) (20% O(2) to 72 hpi and then changed to 5% O(2) up to 216 hpi) on embryo development. Alternating the O(2) tension significantly reduced the number of hatching blastocysts to 7%. Staining with TUNEL revealed that apoptosis occurred in all tested hatched blastocysts, but a significantly lower apoptotic cell ratio was found in embryos cultured under 5% O(2) (P<0.05). Total cell number of embryos cultured under 5% and alternating oxygen was significantly higher than that of other groups (P<0.05). Bax gene expression was detected by means of RT-PCR in only 2 of 66 hatched blastocysts. It can be concluded that 5% oxygen is optimal for bovine embryo culture in cell free media. Moreover, it is very likely that the apoptosis detected by TUNEL staining in this study is Bax-independent.  相似文献   
9.
Lignin: genetic engineering and impact on pulping   总被引:25,自引:0,他引:25  
Lignin is a major component of wood, the most widely used raw material for the production of pulp and paper. Although the biochemistry and molecular biology underpinning lignin production are better understood than they are for the other wood components, recent work has prompted a number of re-evaluations of the lignin biosynthetic pathway. Some of the work on which these revisions have been based involved the investigation of transgenic plants with modified lignin biosynthesis. In addition to their value in elucidating the lignin biosynthetic pathway, such transgenic plants are also being produced with the aim of improving plant raw materials for pulp and paper production. This review describes how genetic engineering has yielded new insights into how the lignin biosynthetic pathway operates and demonstrates that lignin can be improved to facilitate pulping. The current technologies used to produce paper are presented in this review, followed by a discussion of the impact of lignin modification on pulp production. Fine-tuned modification of lignin content, composition, or both is now achievable and could have important economic and environmental benefits.  相似文献   
10.
Transformed callus cultures of Nicotiana tabacum were generated in which the SAM-1 gene from Arabidopsis thaliana encoding S-adenosylmethionine synthetase (SAM-S), under the control of the 35S promoter, had been integrated. The presence of the SAM-1 gene was detected in all tested transformants and the SAM-S activity correlated with the accumulation of SAM in the tobacco callus cultures. Three distinct phenotypic classes were identified among the transgenic cell lines in relation to growth of the cells, structure of the calli, and level of SAM. Transgene silencing was observed in several cultivated transgenic calli and this phenomenon was correlated directly with a low level of SAM-1 mRNA accompanied by a decrease of the SAM-S activity. The transgenic calli overexpressing the SAM-1 gene accumulated a high SAM level. The modifications in SAM-S activity were reflected in the pattern of secondary products present in the different cell lines, thereby demonstrating that the flux through the biosynthetic pathway of a plant secondary product can be modified by means of genetic engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号