排序方式: 共有118条查询结果,搜索用时 0 毫秒
1.
Zhang M Xu YJ Saini HK Turan B Liu PP Dhalla NS 《American journal of physiology. Heart and circulatory physiology》2005,289(2):H832-H839
Although pentoxifylline (PTXF), a phosphodiesterase inhibitor, has been reported to exert beneficial effects in cardiac bypass surgery, its effect and mechanisms against ischemia-reperfusion (I/R) injury in heart are poorly understood. Because I/R is known to increase the level of tumor necrosis factor (TNF)-alpha in myocardium and PTXF has been shown to depress the production of TNF-alpha in failing heart, this study examined the hypothesis that PTXF may attenuate cardiac dysfunction and reduce TNF-alpha content in I/R heart. For this purpose, isolated rat hearts were subjected to global ischemia for 30 min followed by reperfusion for 2-30 min. Although cardiac dysfunction due to ischemia was not affected, the recovery of heart function upon reperfusion was markedly improved by PTXF treatment. This cardioprotective effect of PTXF was dose dependent; maximal effect was seen at a concentration of 125 microM. TNF-alpha, nuclear factor-kappaB (NF-kappaB), and phosphorylated NF-kappaB contents were decreased in ischemic heart but were markedly increased within 2 min of starting reperfusion. The ratio of cytosolic-to-homogenate NF-kappaB was decreased, whereas the ratio of particulate-to-homogenate NF-kappaB was increased in I/R hearts. These changes in TNF-alpha and NF-kappaB protein contents as well as in NF-kappaB redistribution due to I/R were significantly attenuated by PTXF treatment. The results of this study indicate that the cardioprotective effects of PTXF against I/R injury may be due to reductions in the activation of NF-kappaB and the production of TNF-alpha content. 相似文献
2.
Ayaz M Turan B 《American journal of physiology. Heart and circulatory physiology》2006,290(3):H1071-H1080
Intracellular free zinc concentration ([Zn2+]i) is very important for cell functions, and its excessive accumulation is cytotoxic. [Zn2+]i can increase rapidly in cardiomyocytes because of mobilization of Zn2+ from intracellular stores by reactive oxygen species (ROS). Moreover, ROS have been proposed to contribute to direct and/or indirect damage to cardiomyocytes in diabetes. To address these hypotheses, we investigated how elevated [Zn2+]i in cardiomyocytes could contribute to diabetes-induced alterations in intracellular free calcium concentration ([Ca2+]i). We also investigated its relationship to the changes of metallothionein (MT) level of the heart. Cardiomyocytes from normal rats loaded with fura-2 were used to fluorometrically measure resting [Zn2+]i (0.52 +/- 0.06 nM) and [Ca2+]i (26.53 +/- 3.67 nM). Fluorescence quenching by the heavy metal chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine was used to quantify [Zn2+]i. Our data showed that diabetic cardiomyocytes exhibited significantly increased [Zn2+]i (0.87 +/- 0.05 nM ) and [Ca2+]i (49.66 +/- 9.03 nM), decreased levels of MT and reduced glutathione, increased levels of lipid peroxidation and nitric oxide products, and decreased activities of superoxide dismutase, glutathione reductase, and glutathione peroxidase. Treatment (4 wk) of diabetic rats with sodium selenite (5 micromol.kg body wt(-1).day(-1)) prevented these defects induced by diabetes. A comparison of present data with previously observed beneficial effects of selenium treatment on diabetes-induced contractile dysfunction of the heart can suggest that an increase in [Zn2+]i may contribute to oxidant-induced alterations of excitation-contraction coupling in diabetes. In addition, we showed that oxidative stress is involved in the etiology of diabetes-induced downregulation of heart function via depressed endogenous antioxidant defense mechanisms. 相似文献
3.
Belma Giray Josiane Arnaud İskender Sayek Alain Favier Filiz Hıncal 《Journal of trace elements in medicine and biology》2010,24(2):106-110
Importance of iodine and selenium in thyroid metabolism is well known, but the roles of other essential trace elements including copper, zinc, manganese and iron on thyroid hormone homeostasis remain unclear. The aim of this study was to investigate the status of those trace elements in benign thyroid diseases and evaluate possible links between trace element concentrations and thyroid hormones.The study group was composed of 25 patients with multinodular goiter. Concentrations of thyroid hormones (plasma-free thyroxine, FT4; free triiodothyronine, FT3; and thyrotropin, TSH), selenium, copper, zinc, manganese and iron in plasma, and urinary iodine were determined. The results were compared with those of a healthy control group (n=20) with no thyroid disorder.A mild iodine deficiency was observed in the patients with multinodular goiter whereas urinary iodine levels were in the range of “normal” values in healthy controls. All patients were euthyroid, and their thyroid hormone concentrations were not significantly different from the control group. Plasma selenium, zinc and iron concentrations did not differ from controls, while copper and manganese levels were found to be significantly higher in the patients with multinodular goiter indicating links between these trace elements and thyroid function and possibly in development of goiter. Besides iodine, there was a significant correlation between plasma copper concentration and FT3/FT4 ratio. 相似文献
4.
5.
6.
This study is aimed at investigating the inhibitory effect of cadmium ion on glutathione reductase activity of rabbit brain
and liver and the relationship of this effect with dietary selenium. For this purpose, one group of New Zealand rabbits were
fed a selenium-deficient diet, another group was fed a selenium-rich diet, and the control group was fed a normal diet. The
brain and liver tissues of these groups were investigated for the in vitro inhibitory effects of Cd2+ on glutathione reductase activity. For liver, the percentage inhibition of glutathione reductase by 40 nmol/mg protein of
Cd2+ was similar for selenium-deficient and control groups, but significantly lower in the selenium-rich group. For brain tissues,
there was no difference with respect to cadmium inhibition of glutathione reductase in all three groups. 相似文献
7.
Erkan Tuncay Yusuf Olgar Aysegul Durak Sinan Degirmenci Ceylan Verda Bitirim Belma Turan 《Journal of cellular physiology》2019,234(8):13370-13386
Role of β3-AR dysregulation, as either cardio-conserving or cardio-disrupting mediator, remains unknown yet. Therefore, we examined the molecular mechanism of β3-AR activation in depressed myocardial contractility using a specific agonist CL316243 or using β3-AR overexpressed cardiomyocytes. Since it has been previously shown a possible correlation between increased cellular free Zn2+ ([Zn2+]i) and depressed cardiac contractility, we first demonstrated a relation between β3-AR activation and increased [Zn2+]i, parallel to the significant depolarization in mitochondrial membrane potential in rat ventricular cardiomyocytes. Furthermore, the increased [Zn2+]i induced a significant increase in messenger RNA (mRNA) level of β3-AR in cardiomyocytes. Either β3-AR activation or its overexpression could increase cellular reactive oxygen species (ROS) and reactive nitrogen species (RNS) levels, in line with significant changes in nitric oxide (NO)-pathway, including increases in the ratios of pNOS3/NOS3 and pGSK-3β/GSK-3β, and PKG expression level in cardiomyocytes. Although β3-AR activation induced depression in both Na+- and Ca2+-currents, the prolonged action potential (AP) seems to be associated with a marked depression in K+-currents. The β3-AR activation caused a negative inotropic effect on the mechanical activity of the heart, through affecting the cellular Ca2+-handling, including its effect on Ca2+-leakage from sarcoplasmic reticulum (SR). Our cellular level data with β3-AR agonism were supported with the data on high [Zn2+]i and β3-AR protein-level in metabolic syndrome (MetS)-rat heart. Overall, our present data can emphasize the important deleterious effect of β3-AR activation in cardiac remodeling under pathological condition, at least, through a cross-link between β3-AR activation, NO-signaling, and [Zn2+]i pathways. Moreover, it is interesting to note that the recovery in ER-stress markers with β3-AR agonism in hyperglycemic cardiomyocytes is favored. Therefore, how long and to which level the β3-AR agonism would be friend or become foe remains to be mystery, yet. 相似文献
8.
Turan B 《Biological trace element research》2003,94(1):49-59
The whole-cell voltage-clamp technique was applied to isolated ventricular myocytes to investigate the effects of extracellular
and intracellular zinc application on L-type Ca2+ channel currents (I
Ca). Extracellular zinc exposure at micromolar concentration induced a reversible (with washout of ZnCl2) reduction (30%) of I
Ca with no change in current-voltage relationship. On the other hand, an increase of intracellular free-zinc concentration,
[Zn2+]i, from normal (less than 1 nM) to approx 7 nM with 10 μM Zn-pyrithione exposure caused an inhibition of 33±6% in the peak of the I
Ca and altered the voltage dependency of L-type Ca2+ channels with a 10-mV left shift and a hump at around −40 mV in its current-voltage relation. In contrast, N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly inhibited the I
Ca (42±2%), with only a small but detectable outward shift of the holding current measured at the end of the pulses. Zn-pyrithione
and TPEN caused a reproducible decrease of the I
Ca. Interestingly, TPEN application, without Zn-pyrithione pretreatment, inhibited the I
Ca (35±2%) with no change in voltage dependency. Taken together, the results suggest that both extracellular and intracellular
zinc increases under pathological conditions in cardiomyocytes can alter the I
Ca, but their effects are not in the same order and same manner. One should consider these possible side effects when it is
suggested to be vital to cardiovascular cell integrity and functions. 相似文献
9.
Defective cardiac mechanical activity in diabetes results from alterations in intracellular Ca2+ handling, in part, due to increased oxidative stress. Beta-blockers demonstrate marked beneficial effects in heart dysfunction with scavenging free radicals and/or acting as an antioxidant. The aim of this study was to address how β-blocker timolol-treatment of diabetic rats exerts cardioprotection. Timolol-treatment (12-week), one-week following diabetes induction, prevented diabetes-induced depressed left ventricular basal contractile activity, prolonged cellular electrical activity, and attenuated the increase in isolated-cardiomyocyte size without hyperglycemic effect. Both in vivo and in vitro timolol-treatment of diabetic cardiomyocytes prevented the altered kinetic parameters of Ca2+ transients and reduced Ca2+ loading of sarcoplasmic reticulum (SR), basal intracellular free Ca2+ and Zn2+ ([Ca2+]i and [Zn2+]i), and spatio-temporal properties of the Ca2+ sparks, significantly. Timolol also antagonized hyperphosphorylation of cardiac ryanodine receptor (RyR2), and significantly restored depleted protein levels of both RyR2 and calstabin2. Western blot analysis demonstrated that timolol-treatment also significantly normalized depressed levels of some [Ca2+]i-handling regulators, such as Na+/Ca2+ exchanger (NCX) and phospho-phospholamban (pPLN) to PLN ratio. Incubation of diabetic cardiomyocytes with 4-mM glutathione exerted similar beneficial effects on RyR2-macromolecular complex and basal levels of both [Ca2+]i and [Zn2+]i, increased intracellular Zn2+ hyperphosphorylated RyR2 in a concentration-dependent manner. Timolol also led to a balanced oxidant/antioxidant level in both heart and circulation and prevented altered cellular redox state of the heart. We thus report, for the first time, that the preventing effect of timolol, directly targeting heart, seems to be associated with a normalization of macromolecular complex of RyR2 and some Ca2+ handling regulators, and prevention of Ca2+ leak, and thereby normalization of both [Ca2+]i and [Zn2+]i homeostasis in diabetic rat heart, at least in part by controlling the cellular redox status of hyperglycemic cardiomyocytes. 相似文献
10.
Selenium is known to play an important role in the physiology of many different cell types and extracellular application of
selenite causes cellular dysfunction in many different types of tissues. In a previous study, we have shown that in rat ventricles,
sodium selenite (≥1 mM) caused an increase in the resting tension and a decrease in contractile force, in a time-dependent manner. In the present
study, we have shown that sodium selenite caused a contracture state both in Langendorff perfused hearts and isolated papillary
muscles. We also showed that the application of extracellular ATP (0.1 mM) markedly reduced this detrimental effect of sodium selenite on ventricular contraction in Langendorff perfused hearts and
delayed it in isolated papillary muscle preparations. In contrast, isoproterenol (0.1 μM) did not seem to influence this action of sodium selenite in papillary muscle preparations. Possible reasons for this protective
effect of ATP to selenite-induced contracture are also discussed. 相似文献