全文获取类型
收费全文 | 526篇 |
免费 | 38篇 |
专业分类
564篇 |
出版年
2023年 | 5篇 |
2022年 | 7篇 |
2021年 | 10篇 |
2020年 | 8篇 |
2019年 | 8篇 |
2018年 | 12篇 |
2017年 | 11篇 |
2016年 | 25篇 |
2015年 | 45篇 |
2014年 | 39篇 |
2013年 | 46篇 |
2012年 | 45篇 |
2011年 | 37篇 |
2010年 | 33篇 |
2009年 | 19篇 |
2008年 | 31篇 |
2007年 | 21篇 |
2006年 | 27篇 |
2005年 | 11篇 |
2004年 | 16篇 |
2003年 | 10篇 |
2002年 | 3篇 |
2001年 | 3篇 |
2000年 | 3篇 |
1999年 | 4篇 |
1998年 | 3篇 |
1997年 | 2篇 |
1995年 | 2篇 |
1993年 | 5篇 |
1992年 | 3篇 |
1991年 | 7篇 |
1990年 | 2篇 |
1988年 | 2篇 |
1987年 | 2篇 |
1986年 | 3篇 |
1984年 | 4篇 |
1982年 | 2篇 |
1981年 | 2篇 |
1980年 | 3篇 |
1979年 | 3篇 |
1977年 | 2篇 |
1976年 | 2篇 |
1975年 | 2篇 |
1974年 | 4篇 |
1970年 | 3篇 |
1902年 | 2篇 |
1897年 | 4篇 |
1878年 | 1篇 |
1877年 | 2篇 |
1875年 | 1篇 |
排序方式: 共有564条查询结果,搜索用时 0 毫秒
1.
When observed over a temperature range, erythrocyte membrane lipids undergo a transition at 18–20 °C (Zimmer, G. and Shirmer, H. (1974) Biochim. Biophys. Acta 345, 314–320). This observation has prompted an investigation of the effects that substrate binding has on the transition of the red cell membrane. Glucose and sorbose were compared, since transport kinetics of these sugars still pose unresolved questions.In membranes, preloaded with glucose, the break at the transition temperature was intensified, while it was abolished or reversed in membranes preloaded with sorbose.These results were corroborated using different solubilization procedures (sonication, sodium dodecyl sulfate treatment) of the membranes, and also different techniques (viscosimetry, 90° light scattering, 1-anilino-naphthalene-8-sulfonate fluorescence).In extracted membrane lipids, viscosimetry indicated a break at transition temperature after preloading with either glucose or sorbose.Disc electrophoresis revealed a different binding pattern of the two sugars.It is suggested, that the amplification of the discontinuity in red cell membranes by glucose and the abolition or reversal of the break by sorbose are mediated by membrane protein- and/or membrane lipid-protein interaction. 相似文献
2.
E. Porca V. Jurado P.M. Martin-Sanchez B. Hermosin F. Bastian C. Alabouvette C. Saiz-Jimenez 《Ecological Indicators》2011,11(6):1594-1598
Aerobiology of caves is still in its infancy. At present, no clear information has been generated on the limits of acceptance of fungal spores in air which permit classification of the atmosphere of a cave as not dangerous for the conservation of rock-art paintings. We had the unique opportunity to visit and sample different caves in Spain and France, under different managements. We obtained a collection of data related with contamination episodes that permitted the formulation of a tentative index of fungal hazard in show caves. This is supported by the concentration of fungal spores in the cave air, the knowledge of the cave history and management, and a detailed survey of the different halls of the caves. The index classifies the risks into five categories: category 1 identifies a cave without fungal problems, category 2 is an alarm signal for caves, category 3 is a cave threatened by fungi, category 4 is assigned to a cave already affected by fungi, and category 5 is a cave with an irreversible ecological disturbance. This index, a working hypothesis, is launched to promote interest and forum discussion and should be validated by the scientific community after being updated with more surveys and cave analyses carried out under different managements and with different contamination episodes. 相似文献
3.
Brundert M Heeren J Merkel M Carambia A Herkel J Groitl P Dobner T Ramakrishnan R Moore KJ Rinninger F 《Journal of lipid research》2011,52(4):745-758
The mechanisms of HDL-mediated cholesterol transport from peripheral tissues to the liver are incompletely defined. Here the function of scavenger receptor cluster of differentiation 36 (CD36) for HDL uptake by the liver was investigated. CD36 knockout (KO) mice, which were the model, have a 37% increase (P = 0.008) of plasma HDL cholesterol compared with wild-type (WT) littermates. To explore the mechanism of this increase, HDL metabolism was investigated with HDL radiolabeled in the apolipoprotein (125I) and cholesteryl ester (CE, [3H]) moiety. Liver uptake of [3H] and 125I from HDL decreased in CD36 KO mice and the difference, i. e. hepatic selective CE uptake ([3H]125I), declined (–33%, P = 0.0003) in CD36 KO compared with WT mice. Hepatic HDL holo-particle uptake (125I) decreased (–29%, P = 0.0038) in CD36 KO mice. In vitro, uptake of 125I-/[3H]HDL by primary liver cells from WT or CD36 KO mice revealed a diminished HDL uptake in CD36-deficient hepatocytes. Adenovirus-mediated expression of CD36 in cells induced an increase in selective CE uptake from HDL and a stimulation of holo-particle internalization. In conclusion, CD36 plays a role in HDL uptake in mice and by cultured cells. A physiologic function of CD36 in HDL metabolism in vivo is suggested. 相似文献
4.
Christoph Coch Christian Lück Anna Schwickart Bastian Putschli Marcel Renn Tobias H?ller Winfried Barchet Gunther Hartmann Martin Schlee 《PloS one》2013,8(8)
Therapeutic oligonucleotides including siRNA and immunostimulatory ligands of Toll-like receptors (TLR) or RIG-I like helicases (RLH) are a promising novel class of drugs. They are in clinical development for a broad spectrum of applications, e.g. as adjuvants in vaccines and for the immunotherapy of cancer. Species-specific immune activation leading to cytokine release is characteristic for therapeutic oligonucleotides either as an unwanted side effect or intended pharmacology. Reliable in vitro tests designed for therapeutic oligonucleotides are therefore urgently needed in order to predict clinical efficacy and to prevent unexpected harmful effects in clinical development. To serve this purpose, we here established a human whole blood assay (WBA) that is fast and easy to perform. Its response to synthetic TLR ligands (R848: TLR7/8, LPS: TLR4) was on a comparable threshold to the more time consuming peripheral blood mononuclear cell (PBMC) based assay. By contrast, the type I IFN profile provoked by intravenous CpG-DNA (TLR9 ligand) in humans in vivo was more precisely replicated in the WBA than in stimulated PBMC. Since Heparin and EDTA, but not Hirudin, displaced oligonucleotides from their delivery agent, only Hirudin qualified as the anticoagulant to be used in the WBA. The Hirudin WBA exhibited a similar capacity as the PBMC assay to distinguish between TLR7-activating and modified non-stimulatory siRNA sequences. RNA-based immunoactivating TLR7/8- and RIG-I-ligands induced substantial amounts of IFN-α in the Hirudin-WBA dependent on delivery agent used. In conclusion, we present a human Hirudin WBA to determine therapeutic oligonucleotide-induced cytokine release during preclinical development that can readily be performed and offers a close reflection of human cytokine response in vivo. 相似文献
5.
Jens Buchholz Andreas Schwentner Britta Brunnenkan Christina Gabris Simon Grimm Robert Gerstmeir Ralf Takors Bernhard J. Eikmanns Bastian Blombach 《Applied and environmental microbiology》2013,79(18):5566-5575
Exchange of the native Corynebacterium glutamicum promoter of the aceE gene, encoding the E1p subunit of the pyruvate dehydrogenase complex (PDHC), with mutated dapA promoter variants led to a series of C. glutamicum strains with gradually reduced growth rates and PDHC activities. Upon overexpression of the l-valine biosynthetic genes ilvBNCE, all strains produced l-valine. Among these strains, C. glutamicum aceE A16 (pJC4 ilvBNCE) showed the highest biomass and product yields, and thus it was further improved by additional deletion of the pqo and ppc genes, encoding pyruvate:quinone oxidoreductase and phosphoenolpyruvate carboxylase, respectively. In fed-batch fermentations at high cell densities, C. glutamicum aceE A16 Δpqo Δppc (pJC4 ilvBNCE) produced up to 738 mM (i.e., 86.5 g/liter) l-valine with an overall yield (YP/S) of 0.36 mol per mol of glucose and a volumetric productivity (QP) of 13.6 mM per h [1.6 g/(liter × h)]. Additional inactivation of the transaminase B gene (ilvE) and overexpression of ilvBNCD instead of ilvBNCE transformed the l-valine-producing strain into a 2-ketoisovalerate producer, excreting up to 303 mM (35 g/liter) 2-ketoisovalerate with a YP/S of 0.24 mol per mol of glucose and a QP of 6.9 mM per h [0.8 g/(liter × h)]. The replacement of the aceE promoter by the dapA-A16 promoter in the two C. glutamicum
l-lysine producers DM1800 and DM1933 improved the production by 100% and 44%, respectively. These results demonstrate that C. glutamicum strains with reduced PDHC activity are an excellent platform for the production of pyruvate-derived products. 相似文献
6.
7.
8.
Hundsrucker C Krause G Beyermann M Prinz A Zimmermann B Diekmann O Lorenz D Stefan E Nedvetsky P Dathe M Christian F McSorley T Krause E McConnachie G Herberg FW Scott JD Rosenthal W Klussmann E 《The Biochemical journal》2006,396(2):297-306
PKA (protein kinase A) is tethered to subcellular compartments by direct interaction of its regulatory subunits (RI or RII) with AKAPs (A kinase-anchoring proteins). AKAPs preferentially bind RII subunits via their RII-binding domains. RII-binding domains form structurally conserved amphipathic helices with unrelated sequences. Their binding affinities for RII subunits differ greatly within the AKAP family. Amongst the AKAPs that bind RIIalpha subunits with high affinity is AKAP7delta [AKAP18delta; K(d) (equilibrium dissociation constant) value of 31 nM]. An N-terminally truncated AKAP7delta mutant binds RIIalpha subunits with higher affinity than the full-length protein presumably due to loss of an inhibitory region [Henn, Edemir, Stefan, Wiesner, Lorenz, Theilig, Schmidtt, Vossebein, Tamma, Beyermann et al. (2004) J. Biol. Chem. 279, 26654-26665]. In the present study, we demonstrate that peptides (25 amino acid residues) derived from the RII-binding domain of AKAP7delta bind RIIalpha subunits with higher affinity (K(d)=0.4+/-0.3 nM) than either full-length or N-terminally truncated AKAP7delta, or peptides derived from other RII binding domains. The AKAP7delta-derived peptides and stearate-coupled membrane-permeable mutants effectively disrupt AKAP-RII subunit interactions in vitro and in cell-based assays. Thus they are valuable novel tools for studying anchored PKA signalling. Molecular modelling indicated that the high affinity binding of the amphipathic helix, which forms the RII-binding domain of AKAP7delta, with RII subunits involves both the hydrophobic and the hydrophilic faces of the helix. Alanine scanning (25 amino acid peptides, SPOT technology, combined with RII overlay assays) of the RII binding domain revealed that hydrophobic amino acid residues form the backbone of the interaction and that hydrogen bond- and salt-bridge-forming amino acid residues increase the affinity of the interaction. 相似文献
9.
Bartek T Blombach B Lang S Eikmanns BJ Wiechert W Oldiges M Nöh K Noack S 《Applied and environmental microbiology》2011,77(18):6644-6652
L-Valine can be formed successfully using C. glutamicum strains missing an active pyruvate dehydrogenase enzyme complex (PDHC). Wild-type C. glutamicum and four PDHC-deficient strains were compared by (13)C metabolic flux analysis, especially focusing on the split ratio between glycolysis and the pentose phosphate pathway (PPP). Compared to the wild type, showing a carbon flux of 69% ± 14% through the PPP, a strong increase in the PPP flux was observed in PDHC-deficient strains with a maximum of 113% ± 22%. The shift in the split ratio can be explained by an increased demand of NADPH for l-valine formation. In accordance, the introduction of the Escherichia coli transhydrogenase PntAB, catalyzing the reversible conversion of NADH to NADPH, into an L-valine-producing C. glutamicum strain caused the PPP flux to decrease to 57% ± 6%, which is below the wild-type split ratio. Hence, transhydrogenase activity offers an alternative perspective for sufficient NADPH supply, which is relevant for most amino acid production systems. Moreover, as demonstrated for L-valine, this bypass leads to a significant increase of product yield due to a concurrent reduction in carbon dioxide formation via the PPP. 相似文献
10.
Metz J Wächter A Schmidt B Bujnicki JM Schwappach B 《The Journal of biological chemistry》2006,281(1):410-417
Cellular ion homeostasis involves communication between the cytosol and the luminal compartment of organelles. This is particularly critical for metal ions because of their toxic potential. We have identified the yeast homologue of the prokaryotic ArsA protein, the homodimeric ATPase Arr4p, as a protein that binds to the yeast intracellular CLC chloride-transport protein, Gef1p. We show that binding of Arr4p to the C terminus of Gef1p requires the presence of yeast cytosol and is sensitive to a highly specific copper chelator in vitro and in vivo. Copper alone can substitute for cytosol to support the interaction of Arr4p with the C terminus of Gef1p. The migration behavior of Arr4p in nonreducing gel electrophoresis correlates with cellular copper deficiency, repletion, or stress. Our homology model of Arr4p shows that the antimony (arsenic) metal binding site of ArsA is not conserved in Arr4p. The model suggests that a pair of cysteines, Cys285 and Cys288, is located in the interface of the Arr4p dimer. These residues are required for Arr4p homodimerization and for binding to the C terminus of Gef1p. Whereas both proteins are required for normal growth under iron-limiting conditions, they play opposite roles when copper and heat stress are combined in an alkaline environment. Under these conditions, deltagef1 cells grow much better than wild type yeast, whereas deltaarr4 cells are unable to grow. Comparison of the deltaarr4 with the deltaarr4deltagef1 strain suggests that Arr4p antagonizes the function of Gef1p. 相似文献