全文获取类型
收费全文 | 682篇 |
免费 | 57篇 |
专业分类
739篇 |
出版年
2023年 | 5篇 |
2022年 | 6篇 |
2021年 | 17篇 |
2020年 | 9篇 |
2019年 | 11篇 |
2018年 | 10篇 |
2017年 | 19篇 |
2016年 | 18篇 |
2015年 | 36篇 |
2014年 | 37篇 |
2013年 | 44篇 |
2012年 | 53篇 |
2011年 | 55篇 |
2010年 | 35篇 |
2009年 | 43篇 |
2008年 | 35篇 |
2007年 | 44篇 |
2006年 | 37篇 |
2005年 | 37篇 |
2004年 | 31篇 |
2003年 | 37篇 |
2002年 | 22篇 |
2001年 | 5篇 |
2000年 | 6篇 |
1999年 | 7篇 |
1998年 | 8篇 |
1997年 | 10篇 |
1996年 | 6篇 |
1995年 | 3篇 |
1993年 | 7篇 |
1992年 | 4篇 |
1991年 | 2篇 |
1990年 | 5篇 |
1989年 | 3篇 |
1986年 | 3篇 |
1985年 | 3篇 |
1983年 | 2篇 |
1982年 | 3篇 |
1981年 | 2篇 |
1980年 | 2篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1977年 | 2篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1973年 | 1篇 |
1972年 | 1篇 |
1970年 | 2篇 |
1967年 | 1篇 |
排序方式: 共有739条查询结果,搜索用时 15 毫秒
1.
Thórólfsson M Ibarra-Molero B Fojan P Petersen SB Sanchez-Ruiz JM Martínez A 《Biochemistry》2002,41(24):7573-7585
Human phenylalanine hydroxylase (hPAH) is a tetrameric enzyme that catalyzes the hydroxylation of L-phenylalanine (L-Phe) to L-tyrosine; a dysfunction of this enzyme causes phenylketonuria. Each subunit in hPAH contains an N-terminal regulatory domain (Ser2-Ser110), a catalytic domain (Asp112-Arg410), and an oligomerization domain (Ser411-Lys452) including dimerization and tetramerization motifs. Two partially overlapping transitions are seen in differential scanning calorimetry (DSC) thermograms for wild-type hPAH in 0.1 M Na-Hepes buffer, 0.1 M NaCl, pH 7.0. Although these transitions are irreversible, studies on their scan-rate dependence support that the equilibrium thermodynamics analysis is permissible in this case. Comparison with the DSC thermograms for truncated forms of the enzyme, studies on the protein and L-Phe concentration effects on the transitions, and structure-energetic calculations based on a modeled structure support that the thermal denaturation of hPAH occurs in three stages: (i) unfolding of the four regulatory domains, which is responsible for the low-temperature calorimetric transition; (ii) unfolding of two (out of the four) catalytic domains, which is responsible for the high-temperature transition; and (iii) irreversible protein denaturation, which is likely responsible for the observed exothermic distortion in the high-temperature side of the high-temperature transition. Stages 1 and 2 do not appear to be two-state processes. We present an approach to the analysis of ligand effects on DSC transition temperatures, which is based on the general binding polynomial formalism and is not restricted to two-state transitions. Application of this approach to the L-Phe effect on the DSC thermograms for hPAH suggests that (i) there are no binding sites for L-Phe in the regulatory domains; therefore, contrary to the common belief, the activation of PAH by L-Phe seems to be the result of its homotropic cooperative binding to the active sites. (ii) The regulatory domain appears to be involved in cooperativity through its interactions with the catalytic and oligomerization domains; thus, upon regulatory domain unfolding, the cooperativity in the binding of L-Phe to the catalytic domains seems to be lost and the value of the L-Phe concentration corresponding to half-saturation is increased. Overall, our results contribute to the understanding of the conformational stability and the substrate-induced cooperative activation of this important enzyme. 相似文献
2.
3.
4.
Devi YS Seibold AM Shehu A Maizels E Halperin J Le J Binart N Bao L Gibori G 《The Journal of biological chemistry》2011,286(9):7609-7618
Prolactin (PRL) is essential for normal reproduction and signals through two types of receptors, the short (PRL-RS) and long (PRL-RL) form. We have previously shown that transgenic mice expressing only PRL-RS (PRLR(-/-)RS) display abnormal follicular development and premature ovarian failure. Here, we report that MAPK, essential for normal follicular development, is critically inhibited by PRL in reproductive tissues of PRLR(-/-)RS mice. Consequently, the phosphorylation of MAPK downstream targets are also markedly inhibited by PRL without affecting immediate upstream kinases, suggesting involvement of MAPK specific phosphatase(s) in this inhibition. Similar results are obtained in a PRL-responsive ovary-derived cell line (GG-CL) that expresses only PRL-RS. However, we found the expression/activation of several known MAPK phosphatases not to be affected by PRL, suggesting a role of unidentified phosphatase(s). We detected a 27-kDa protein that binds to the intracellular domain of PRL-RS and identified it as dual specific phosphatase DUPD1. PRL does not induce expression of DUDP1 but represses its phosphorylation on Thr-155. We also show a physical association of this phosphatase with ERK1/2 and p38 MAPK. Using an in vitro phosphatase assay and overexpression studies, we established that DUPD1 is a MAPK phosphatase. Dual specific phosphatase inhibitors as well as siRNA to DUPD1, completely prevent PRL-mediated MAPK inhibition in ovarian cells. Our results strongly suggest that deactivation of MAPK by PRL/PRL-RS contributes to the severe ovarian defect in PRLR(-/-)RS mice and demonstrate the novel association of PRL-RS with DUPD1 and a role for this phosphatase in MAPK deactivation. 相似文献
5.
Florio M Leto K Muzio L Tinterri A Badaloni A Croci L Zordan P Barili V Albieri I Guillemot F Rossi F Consalez GG 《Development (Cambridge, England)》2012,139(13):2308-2320
By serving as the sole output of the cerebellar cortex, integrating a myriad of afferent stimuli, Purkinje cells (PCs) constitute the principal neuron in cerebellar circuits. Several neurodegenerative cerebellar ataxias feature a selective cell-autonomous loss of PCs, warranting the development of regenerative strategies. To date, very little is known as to the regulatory cascades controlling PC development. During central nervous system development, the proneural gene neurogenin 2 (Neurog2) contributes to many distinct neuronal types by specifying their fate and/or dictating development of their morphological features. By analyzing a mouse knock-in line expressing Cre recombinase under the control of Neurog2 cis-acting sequences we show that, in the cerebellar primordium, Neurog2 is expressed by cycling progenitors cell-autonomously fated to become PCs, even when transplanted heterochronically. During cerebellar development, Neurog2 is expressed in G1 phase by progenitors poised to exit the cell cycle. We demonstrate that, in the absence of Neurog2, both cell-cycle progression and neuronal output are significantly affected, leading to an overall reduction of the mature cerebellar volume. Although PC fate identity is correctly specified, the maturation of their dendritic arbor is severely affected in the absence of Neurog2, as null PCs develop stunted and poorly branched dendrites, a defect evident from the early stages of dendritogenesis. Thus, Neurog2 represents a key regulator of PC development and maturation. 相似文献
6.
Mitochondrial DNA of pre‐last glacial maximum red deer from NW Spain suggests a more complex phylogeographical history for the species 下载免费PDF全文
Alba Rey‐Iglesia Aurora Grandal‐d'Anglade Paula F. Campos Anders Johannes Hansen 《Ecology and evolution》2017,7(24):10690-10700
The major climatic oscillations that characterized the Quaternary had a great influence on the evolution and distribution of several species. During cold periods, the distribution of temperate‐adapted species became fragmented with many surviving in southern refugia (Iberian, Italian, and Balkan Peninsulas). Red deer was one of the species that contracted its original range to southern refugia. Currently, two main lineages have been described for the species: western and eastern. We have analyzed fossils pre‐dating the last glacial maximum (LGM) from Liñares cave (NW Spain) that belongs to the peripheral range of the western clade, and fossils from the Danish Holocene belonging to the central part of the same clade. Phylogenetic analyses place our samples in the western clade. However, some specimens from Liñares represent an early split in the tree along with other pre‐LGM western samples from previous studies. Despite low bootstrap values in the Bayesian phylogenies, haplotype networks connect these foreign haplotypes to the eastern clade. We suggest a mixed phylogeographical model to explain this pattern with range expansions from the east during the expansion phase after the cold periods in marine isotope stage 3. We find slight isolation by distance in post‐LGM populations that could be a consequence of the recolonization from southern refugia after the LGM. 相似文献
7.
Tegan M. Haslam Richard Haslam Didier Thoraval Stéphanie Pascal Camille Delude Frédéric Domergue Aurora Ma?as Fernández Frédéric Beaudoin Johnathan A. Napier Ljerka Kunst Jér?me Joubès 《Plant physiology》2015,167(3):682-692
The extension of very-long-chain fatty acids (VLCFAs) for the synthesis of specialized apoplastic lipids requires unique biochemical machinery. Condensing enzymes catalyze the first reaction in fatty acid elongation and determine the chain length of fatty acids accepted and produced by the fatty acid elongation complex. Although necessary for the elongation of all VLCFAs, known condensing enzymes cannot efficiently synthesize VLCFAs longer than 28 carbons, despite the prevalence of C28 to C34 acyl lipids in cuticular wax and the pollen coat. The eceriferum2 (cer2) mutant of Arabidopsis (Arabidopsis thaliana) was previously shown to have a specific deficiency in cuticular waxes longer than 28 carbons, and heterologous expression of CER2 in yeast (Saccharomyces cerevisiae) demonstrated that it can modify the acyl chain length produced by a condensing enzyme from 28 to 30 carbon atoms. Here, we report the physiological functions and biochemical specificities of the CER2 homologs CER2-LIKE1 and CER2-LIKE2 by mutant analysis and heterologous expression in yeast. We demonstrate that all three CER2-LIKEs function with the same small subset of condensing enzymes, and that they have different effects on the substrate specificity of the same condensing enzyme. Finally, we show that the changes in acyl chain length caused by each CER2-LIKE protein are of substantial importance for cuticle formation and pollen coat function.The extension of fatty acids to lengths greater than 28 carbons (C28) is an exceptional process in plant metabolism in that it requires unique biochemical machinery, and the elongation products are used for the synthesis of specialized plant metabolites. Derivatives of C30 to C34 fatty acids make up the bulk of plant cuticular wax, which coats all of a plant’s primary aerial surfaces. Cuticular wax serves as a barrier against transpirational water loss (Riederer and Schreiber, 2001) and protects the plant from both biotic (Eigenbrode, 1996) and abiotic (Grace and van Gardingen, 1996) stresses. C30 to C34 fatty acid-derived lipids are also components of the pollen coat, where they function in pollen hydration and germination on dry stigma (Elleman et al., 1992; Preuss et al., 1993).The core complex that elongates long-chain fatty acids (C16–C18) to very-long-chain fatty acids (VLCFAs; C20–C34) consists of four interacting proteins localized to the endoplasmic reticulum (ER). β-Keto-acyl-CoA synthases (KCSs), also known as condensing enzymes, catalyze the first reaction required for VLCFA elongation, condensing malonyl-CoA with an acyl-CoA (n) to produce a β-keto-acyl-CoA (n + 2). Condensation is both a specific and rate-limiting step in elongation (Millar and Kunst, 1997). Chain length specificity of KCSs is of particular importance because VLCFA length determines the downstream use of the fatty acid (for review, see Joubès et al., 2008; Haslam and Kunst, 2013a). There are two families of condensing enzymes in Arabidopsis (Arabidopsis thaliana). The ELONGATION-DEFECTIVE (ELO)-LIKE family is homologous to yeast (Saccharomyces cerevisiae) ELOs, and has putative functions in sphingolipid biosynthesis (Quist et al., 2009). Although our current understanding of plant ELO-LIKE physiological function and biochemical activity is limited, the mechanism of yeast Elo protein activity has been thoroughly investigated (Denic and Weissman, 2007). The FATTY ACID ELONGATION1 (FAE1)-type family is homologous to the first condensing enzyme identified in Arabidopsis, which is required for the synthesis of C20 to C22 VLCFAs in Arabidopsis oilseeds. Many of the 21 FAE1-type condensing enzymes of Arabidopsis have been characterized using reverse genetics and heterologous expression in yeast (Trenkamp et al., 2004; Blacklock and Jaworski, 2006; Paul et al., 2006; Tresch et al., 2012). This work has revealed the intriguing caveat that, although FAE1-type KCSs are involved in the synthesis of diverse downstream metabolites and use a broad range of acyl chain lengths, none are able to efficiently elongate VLCFAs beyond C28 (for review, see Haslam and Kunst, 2013a), which is essential for the production of cuticular wax components.Eceriferum2 (cer2) and glossy2 (gl2) mutants of Arabidopsis and Zea mays, respectively, are deficient in specific VLCFA-derived waxes longer than C28 (Bianchi et al., 1975; McNevin et al., 1993; Jenks et al., 1995). Both mutations were mapped to genes that do not resemble any component of the elongase complex (Tacke et al., 1995; Xia et al., 1996), but are homologous to the BAHD family of acyltransferases (St-Pierre et al., 1998). However, site-directed mutagenesis of conserved acyltransferase catalytic site amino acids in CER2 revealed that this motif is not required for CER2 function in cuticular wax synthesis (Haslam et al., 2012).CER6 is a condensing enzyme necessary for the accumulation of stem cuticular waxes in Arabidopsis, but when expressed in yeast, CER6 can only elongate VLCFAs to C28. When CER2 is expressed in yeast, it has no elongation activity. However, coexpression of CER2 and CER6 results in efficient production of C30 VLCFAs. Coexpression of CER2 with LfKCS45, a condensing enzyme from the crucifer Lesquerella fendleri that generates C28 and a small amount of C30 VLCFAs (Moon et al., 2004), does not alter product chain length (Haslam et al., 2012). Based on these observations, it was hypothesized that CER2 modifies the chain length specificity of the core elongase complex by interaction with specific KCS enzymes (Haslam et al., 2012).CER2 homologs are found in diverse flowering plant lineages, and many species have multiple CER2 homologs (Tuominen et al., 2011). A BLAST search of proteins from Arabidopsis identified two sequences with substantial similarity to CER2. is 36% identical to CER2, and is encoded by the gene At4g13840. We named this gene CER2-LIKE1 (also known as CER26) ( NP_193120Pascal et al., 2013). is 38% identical to CER2, and is encoded by the gene At3g23840. We named this gene CER2-LIKE2 (also named CER26-LIKE) ( NP_566741Pascal et al., 2013). Characterization of a cer2-like1 null mutant revealed a role for the CER2-LIKE1 protein in the elongation of leaf wax precursors beyond C30, analogous to the role of CER2 in C28 elongation in stems (Haslam et al., 2012; Pascal et al., 2013). cer2 cer2-like1 double mutants are deficient in the formation of wax components longer than C28 in both stems and leaves. As the cer2 single mutant has no leaf wax phenotype, the additive effect of these two mutations on leaf wax composition indicates that there is partial functional redundancy between the two genes.A comprehensive investigation of the biochemical and physiological functions of CER2-LIKE proteins is necessary. Beyond the value of knowing the specific roles of each homolog, such an investigation has potential to elucidate the nature of CER2-LIKE protein function. With this objective, we used our data to address the following questions: (1) Do CER2-LIKE proteins function with CER6 alone, or can they modify the activity of other FAE1-type condensing enzymes? (2) Do CER2-LIKE proteins have different effects on the substrate specificity of the same condensing enzyme, or is substrate specificity determined exclusively by the condensing enzyme? (3) What is the physiological relevance of the subtle changes in acyl lipid chain length that CER2-LIKE proteins induce? 相似文献
8.
9.
Isocitrate dehydrogenase (IDH) has been studied extensively due to its central role in the Krebs cycle, catalyzing the oxidative NAD(P)(+)-dependent decarboxylation of isocitrate to alpha-ketoglutarate and CO(2). Here, we present the first crystal structure of IDH from a psychrophilic bacterium, Desulfotalea psychrophila (DpIDH). The structural information is combined with a detailed biochemical characterization and a comparative study with IDHs from the mesophilic bacterium Desulfitobacterium hafniense (DhIDH), porcine (PcIDH), human cytosolic (HcIDH) and the hyperthermophilic Thermotoga maritima (TmIDH). DpIDH was found to have a higher melting temperature (T(m)=66.9 degrees C) than its mesophilic homologues and a suboptimal catalytic efficiency at low temperatures. The thermodynamic activation parameters indicated a disordered active site, as seen also for the drastic increase in K(m) for isocitrate at elevated temperatures. A methionine cluster situated at the dimeric interface between the two active sites and a cluster of destabilizing charged amino acids in a region close to the active site might explain the poor isocitrate affinity. On the other hand, DpIDH was optimized for interacting with NADP(+) and the crystal structure revealed unique interactions with the cofactor. The highly acidic surface, destabilizing charged residues, fewer ion pairs and reduced size of ionic networks in DpIDH suggest a flexible global structure. However, strategic placement of ionic interactions stabilizing the N and C termini, and additional ionic interactions in the clasp domain as well as two enlarged aromatic clusters might counteract the destabilizing interactions and promote the increased thermal stability. The structure analysis of DpIDH illustrates how psychrophilic enzymes can adjust their flexibility in dynamic regions during their catalytic cycle without compromising the global stability of the protein. 相似文献
10.
Immunogenicity and safety assessment of the Cuban recombinant hepatitis B vaccine in healthy adults.
Zurina Cinza Estévez Arístides Aguilar Betancourt Verena Muzio González Nelvis Figueroa Baile Carmen Valenzuela Silva Francisco Hernández Bernal Eduardo Pentón Arias Aurora Delhanty Fernández Nelia Martin Olazábal Amaurys del Río Martín Lester Leal Batista Gloria Véliz Ríos Héctor Hernández Hernández Aracelis Blanco Hernández Evelyn Pérez Lugo Joel de la Torre Cruz Bertha L Batista Marchec Leovaldo Alvarez Falcón Jannet Trujillo Brito Darién Ortega León Pedro López Saura 《Biologicals》2007,35(2):115-122
Manufactures of biotechnological/biological products (including vaccines) frequently make changes to manufacturing processes of products both during development and after approval. In our case, a non-inferiority bridging study was carried out to demonstrate that changes in the production plant facilities of Cuban recombinant hepatitis B vaccine, Heberbiovac HB, did not affect the safety and immunogenicity of the vaccine. This controlled, randomized, doubled-blinded trial included 501 volunteers, aged between 20 and 64, who were given three doses of vaccine (20 microg HBsAg/mL) at month 0, 1, and 2. Four lots were evaluated (three corresponding to the new production facilities and a control one produced in the older facilities). One month after the third dose, were observed protective levels of anti-HBsAg in 97% of the subjects that concluded the study with a geometric mean antibody titer (GMT) of 931.18 IU/L. Normal values of body mass index (BMI), the younger ages, and being a female, were significantly related to a good antibody response. The vaccine was well tolerated. Pain at the injection site was the most commonly reported symptom. We conclude that Heberbiovac HB vaccine maintains its characteristics after the modifications carried out in the production plant facilities and both, lot obtained in previous facilities and in the new ones, are comparable in terms of safety and immunogenicity. 相似文献