首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   11篇
  228篇
  2023年   2篇
  2022年   4篇
  2021年   9篇
  2019年   2篇
  2018年   12篇
  2017年   9篇
  2016年   10篇
  2015年   13篇
  2014年   13篇
  2013年   24篇
  2012年   24篇
  2011年   24篇
  2010年   13篇
  2009年   5篇
  2008年   12篇
  2007年   9篇
  2006年   8篇
  2005年   4篇
  2004年   12篇
  2003年   6篇
  2002年   8篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
排序方式: 共有228条查询结果,搜索用时 15 毫秒
1.
2.
Integration of living cells with novel microdevices requires the development of innovative technologies for manipulating cells. Chemical surface patterning has been proven as an effective method to control the attachment and growth of diverse cell populations. Patterning polyelectrolyte multilayers through the combination of layer‐by‐layer self‐assembly technique and photolithography offer a simple, versatile, and silicon compatible approach that overcomes chemical surface patterning limitations, such as short‐term stability and low‐protein adsorption resistance. In this study, direct photolithographic patterning of two types of multilayers, PAA (poly acrylic acid)/PAAm (poly acryl amide) and PAA/PAH (poly allyl amine hydrochloride), were developed to pattern mammalian neuronal, skeletal, and cardiac muscle cells. For all studied cell types, PAA/PAAm multilayers behaved as a cytophobic surface, completely preventing cell attachment. In contrast, PAA/PAH multilayers have shown a cell‐selective behavior, promoting the attachment and growth of neuronal cells (embryonic rat hippocampal and NG108‐15 cells) to a greater extent, while providing little attachment for neonatal rat cardiac and skeletal muscle cells (C2C12 cell line). PAA/PAAm multilayer cellular patterns have also shown a remarkable protein adsorption resistance. Protein adsorption protocols commonly used for surface treatment in cell culture did not compromise the cell attachment inhibiting feature of the PAA/PAAm multilayer patterns. The combination of polyelectrolyte multilayer patterns with different adsorbed proteins could expand the applicability of this technology to cell types that require specific proteins either on the surface or in the medium for attachment or differentiation, and could not be patterned using the traditional methods. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   
3.
4.
The isolated cyanobacterium containing biopigments like chlorophyll-a, phycoerythrin, phycocyanin, and carotenoid was cultured under different quality of light modes to ascertain biomass and pigment productivity. On the basis of 16S rRNA gene sequence, the isolate was identified as Pseudanabaena sp. Maximum biomass concentration obtained in white-, blue-, and green-light was 0.82, 0.94, and 0.89 g/L, respectively. It was observed that maximum phycoerythrin production was in green light (39.2 mg/L), ensued by blue light (32.2 mg/L), while phycocyanin production was maximum in red light (10.9 mg/L). In yellow light, pigment production as well as the growth rate gradually declined after 12 days. Carotenoid production decreased in blue-, white-, and red-light after 15 days, while in green light it had increased gradually. The present communication suggests that Pseudanabaena sp. can be used for commercial production of phycoerythrin when grown under green light.  相似文献   
5.
In our previous studies, we observed the biological control effect of lactic acid bacteria strains (LABs) KLF01, KLC02 and KPD03 against different plant pathogenic bacteria in vitro against Ralstonia solanacearum, and strains KLF01 and KLC02 against Pectobacterium carotovorum under greenhouse and field experiments, respectively. In this study, we observed the efficacy of these bacteria against bacterial spot pathogen (Xanthomonas campestris pv. vesicatoria) and their plant growth-promoting activities in pepper (Capsicum annuum L. var. annuum), under greenhouse and field conditions. LABs significantly (P < 0.05) reduced bacterial spot on pepper plants in comparison to untreated plants in both the greenhouse and the field experiments. The plant growth-promoting effect of LABs on pepper varied; some strains had a significant effect on growth promotion (P < 0.05) compared with untreated plants, while some showed no significant effect in the greenhouse and field experiments. Additionally, LABs were able to colonise roots, produce indole-3-acetic acid (IAA), siderophores and solubilise phosphate. These findings indicate that application of LABs could provide a promising alternative for the management of bacterial spot disease in pepper plants and could therefore be used as a healthy plant growth-promoting agent.  相似文献   
6.
7.
Chalcones are biologically active class of compounds, known for their anticancer activities. Here we show for the first time that out of the six synthetic derivatives of chalcone tested, 2′-hydroxy-retrochalcone (HRC) was the most effective in inducing extensive cytoplasmic vacuolation mediated death called paraptosis in malignant breast and cervical cancer cells. The cell death by HRC is found to be nonapoptotic in nature due to the absence of DNA fragmentation, PARP cleavage, and phosphatidylserine externalization. It was also found to be nonautophagic as there was an increase in the levels of autophagic markers LC3I, LC3II and p62. Immunofluorescence with the endoplasmic reticulum (ER) marker protein calreticulin showed that the cytoplasmic vacuoles formed were derived from the ER. This ER dilation was due to ER stress as evidenced from the increase in polyubiquitinated proteins, Bip and CHOP. Docking studies revealed that HRC could bind to the Thr1 residue on the active site of the chymotrypsin-like subunit of the proteasome. The inhibition of proteasomal activity was further confirmed by the fluorescence based assay of the chymotrypsin-like subunit of the 26S proteasome. The cell death by HRC was also triggered by the collapse of mitochondrial membrane potential and depletion of ATP. Pretreatment with thiol antioxidants and cycloheximide were able to inhibit this programmed cell death. Thus our data suggest that HRC can effectively kill cancer cells via paraptosis, an alternative death pathway and can be a potential lead molecule for anticancer therapy.  相似文献   
8.
Cellulose nanofibrils of diameter 10–50 nm were obtained from wheat straw using alkali steam explosion coupled with high shear homogenization. High shear results in shearing of the fiber agglomerates resulting in uniformly dispersed nanofibrils. The chemical composition of fibers at different stages were analyzed according to the ASTM standards and showed increase in α-cellulose content and decrease in lignin and hemicellulose. Structural analysis of steam exploded fibers was carried out by Fourier Transform Infrared (FT-IR) spectroscopy and X-ray diffraction (XRD). Thermal stability was higher for cellulose nanofibrils as compared to wheat straw and chemically treated fibers. The fiber diameter distribution was obtained using image analysis software. Characterization of the fibers by AFM, TEM, and SEM showed that fiber diameter decreases with treatment and final nanofibril size was 10–15 nm. FT-IR, XRD, and TGA studies confirmed the removal of hemicellulose and lignin during the chemical treatment process.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号