首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   20篇
  国内免费   1篇
  208篇
  2023年   3篇
  2022年   4篇
  2021年   5篇
  2020年   1篇
  2019年   4篇
  2018年   9篇
  2017年   3篇
  2016年   7篇
  2015年   7篇
  2014年   6篇
  2013年   10篇
  2012年   11篇
  2011年   13篇
  2010年   13篇
  2009年   5篇
  2008年   12篇
  2007年   7篇
  2006年   8篇
  2005年   10篇
  2004年   8篇
  2003年   18篇
  2002年   15篇
  2001年   1篇
  2000年   5篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1984年   2篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1968年   1篇
  1966年   1篇
  1953年   1篇
排序方式: 共有208条查询结果,搜索用时 15 毫秒
1.

Aim

Many important patterns and processes vary across the phylogeny and depend on phylogenetic scale. Nonetheless, phylogenetic scale has never been formally conceptualized, and its potential remains largely unexplored. Here, we formalize the concept of phylogenetic scale, review how phylogenetic scale has been considered across multiple fields and provide practical guidelines for the use of phylogenetic scale to address a range of biological questions.

Innovation

We summarize how phylogenetic scale has been treated in macroevolution, community ecology, biogeography and macroecology, illustrating how it can inform, and possibly resolve, some of the longstanding controversies in these fields. To promote the concept empirically, we define phylogenetic grain and extent, scale dependence, scaling and the domains of phylogenetic scale. We illustrate how existing phylogenetic data and statistical tools can be used to investigate the effects of scale on a variety of well‐known patterns and processes, including diversification rates, community structure, niche conservatism or species‐abundance distributions.

Main conclusions

Explicit consideration of phylogenetic scale can provide new and more complete insight into many longstanding questions across multiple fields (macroevolution, community ecology, biogeography and macroecology). Building on the existing resources and isolated efforts across fields, future research centred on phylogenetic scale might enrich our understanding of the processes that together, but over different scales, shape the diversity of life.  相似文献   
2.
3.
SNARE proteins are essential for intracellular membrane fusion of eukaryotes. Their assembly into stable four-helix bundles bridges membranes and may provide the energy for initiating membrane fusion. In vitro, assembly of soluble SNARE fragments is accompanied by major structural rearrangements that can be described as a folding reaction. The pathways and the thermodynamics of SNARE protein interactions, however, are not known. Here we report that assembly and dissociation of two distantly related SNARE complexes exhibit a marked hysteresis. The assembled and disassembled native states are separated by a kinetic barrier and cannot equilibrate on biologically relevant timescales. We suggest that the hysteresis is a hallmark of all SNARE complexes and that complex assembly and disassembly follow different pathways that may be independently controlled.  相似文献   
4.
Assembly of soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE) proteins between two opposing membranes is thought to be the key event that initiates membrane fusion. Many new SNARE proteins have recently been localized to distinct intracellular compartments, supporting the view that sets of specific SNAREs are specialized for distinct trafficking steps. We have now investigated whether other SNAREs can form complexes with components of the synaptic SNARE complex including synaptobrevin/VAMP 2, SNAP-25, and syntaxin 1. When the Q-SNAREs syntaxin 2, 3, and 4, and the R-SNARE endobrevin/VAMP 8 were used in various combinations, heat-resistant complexes were formed. Limited proteolysis revealed that these complexes contained a protease-resistant core similar to that of the synaptic complex. All complexes were disassembled by the ATPase N-ethylmaleimide-sensitive fusion protein and its cofactor alpha-SNAP. Circular dichroism spectroscopy showed that major conformational changes occur during assembly, which are associated with induction of structure from unstructured monomers. Furthermore, no preference for synaptobrevin was observed during the assembly of the synaptic complex when endobrevin/VAMP 8 was present in equal concentrations. We conclude that cognate and non-cognate SNARE complexes are very similar with respect to biophysical properties, assembly, and disassembly, suggesting that specificity of membrane fusion in intracellular membrane traffic is not due to intrinsic specificity of SNARE pairing.  相似文献   
5.

Aims

The diverse physiological functions of histamine are mediated through distinct histamine receptors. In this study we investigated the role of H2R and H4R in the effects of histamine on the production of reactive oxygen species by phagocytes in whole blood.

Main methods

Changes in reactive oxygen species (ROS) production by whole blood phagocytes after treatment with histamine, H4R agonists (4-methylhistamine, VUF8430), H2R agonist (dimaprit) and their combinations with H4R antagonist (JNJ10191584) and H2R antagonist (ranitidine) were determined using the chemiluminescence (CL) assay. To exclude the direct scavenging effects of the studied compounds on the CL response, the antioxidant properties of all compounds were measured using several methods (TRAP, ORAC, and luminol–HRP–H2O2 based CL).

Key findings

Histamine, 4-methylhistamine, VUF8430 and dimaprit inhibited the spontaneous and OZP-activated whole blood CL in a dose-dependent manner. On the other hand, only VUF8430 was able to inhibit PMA-activated whole blood CL. Ranitidine, but not JNJ10191584, completely reduced the effects of histamine, 4-methylhistamine and dimaprit. The direct scavenging ability of tested compounds was negligible.

Significance

Our results demonstrate that the inhibitory effects of histamine on ROS production in whole blood phagocytes were caused by H2R. Our results also suggest that H4R agonists in concentrations higher than 10− 6 M may also influence ROS production via binding to H2R.  相似文献   
6.
CGP 28 014 is a specific inhibitor of catechol-O-methyltransferase (COMT) in vivo. In humans, the inhibition was assessed by measuring urinary excretion of isoquinolines and with the levodopa test. Following administration of CGP 28 014, urinary excretion of isoquinolines was significantly increased. In rats, CGP 28 014 reduced plasma and striatal concentrations of 3-O-methyldopa (30MD) in a dose-dependent manner. Acute and subchronic administration of CGP 28 014 alone or in combination with the peripherally acting decarboxylase inhibitor benserazide decreased plasma 30MD as an index of COMT inhibition by about 50%. There seems to be a close relationship between the time-course of plasma concentrations of CGP 28 014 and the extent of COMT inhibition assessed by the 30MD/DOPA ratio in plasma.  相似文献   
7.
Sexual selection is considered one of the key processes that contribute to the emergence of new species. While the connection between sexual selection and speciation has been supported by comparative studies, the mechanisms that mediate this connection remain unresolved, especially in plants. Similarly, it is not clear how speciation processes within plant populations translate into large-scale speciation dynamics. Here, we review the mechanisms through which sexual selection, pollination, and mate choice unfold and interact, and how they may ultimately produce reproductive isolation in plants. We also overview reproductive strategies that might influence sexual selection in plants and illustrate how functional traits might connect speciation at the population level (population differentiation, evolution of reproductive barriers; i.e. microevolution) with evolution above the species level (macroevolution). We also identify outstanding questions in the field, and suitable data and tools for their resolution. Altogether, this effort motivates further research focused on plants, which might potentially broaden our general understanding of speciation by sexual selection, a major concept in evolutionary biology.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号