排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
zeta-Crystallin is a taxon-specific crystallin found in the eye lens of guinea pig and other hystricomorph rodents and camelids. It is an NADPH:quinone oxidoreductase and is also present in low amounts in other tissues where it might act as a detoxifying enzyme. A lens-specific promoter confers lens-specific expression of the gene in high amounts where it is speculated to play a structural role in maintaining the transparency of the lens ensemble. A deletion mutation leads to autosomal dominant congenital cataract and also results in the loss of NADPH binding. In order to perform structural studies with the protein with an aim to delineate the cause of cataract in these mutant guinea pigs, recombinant zeta-crystallin was cloned and expressed in Escherichia coli. The overexpression of the protein in E. coli resulted in a major fraction of it partitioning into inclusion bodies. The co-overexpression of the bacterial chaperone system GroEL/ES along with zeta-crystallin could significantly enhance the yield of soluble protein. Active zeta-crystallin could then be purified from the E. coli using Mono Q anion exchange FPLC and was found to be identical to the native zeta-crystallin isolated from the guinea pig lens with respect to size, spectral properties, and activity. 相似文献
2.
3.
4.
The yeast alpha-factor receptor encoded by the STE2 gene is a member of the extended family of G protein coupled receptors (GPCRs) involved in a wide variety of signal transduction pathways. We report here the use of a fluorescent alpha-factor analogue [K(7)(NBD), Nle(12)] alpha-factor (Lys(7) (7-nitrobenz-2-oxa-1,3-diazol-4-yl), norleucine(12) alpha-factor) in conjunction with flow cytometry and fluorescence microscopy to study binding of ligand to the receptor. Internalization of the fluorescent ligand following receptor binding can be monitored by fluorescence microscopy. The use of flow cytometry to detect binding of the fluorescent ligand to intact yeast cells provides a sensitive and reproducible assay that can be conducted at low cell densities and is relatively insensitive to fluorescence of unbound and nonspecifically bound ligand. Using this assay, we determined that some receptor alleles expressed in cells lacking the G protein alpha subunit exhibit a higher equilibrium binding affinity for ligand than the same alleles expressed in isogenic cells containing the normal complement of G protein subunits. On the basis of time-dependent changes in the intensity and shape of the emission spectrum of [K(7)(NBD),Nle(12)] alpha-factor during binding, we infer that the ligand associates with receptors via a two-step process involving an initial interaction that places the fluorophore in a hydrophobic environment, followed by a conversion to a state in which the fluorophore moves to a more polar environment. 相似文献
5.
Bajaj A Connelly SM Gehret AU Naider F Dumont ME 《Biochimica et biophysica acta》2007,1773(6):707-717
The yeast pheromone receptor, Ste2p, is a G protein coupled receptor that initiates cellular responses to alpha-mating pheromone, a 13 residue peptide that carries a net positive charge at physiological pH. We have examined the role of extracellular charged groups on the receptor in response to the pheromone. Substitutions of Asn or Ala for one extracellular residue, Asp275, affected both pheromone binding and signaling, suggesting that this position interacts directly with ligand. The other seven extracellular acidic residues could be individually replaced by polar residues with no detectable effects on receptor function. However, substitution of Ala for each of these seven residues resulted in impairment of signaling without affecting pheromone binding, implying that the polar nature of these residues promotes receptor activation. In contrast, substitution of Ala for each of the six positively charged residues at the extracellular surface of Ste2p did not affect signaling. 相似文献
6.
Xanthohumol (XH) is the most abundant prenylated flavonoid found in the hop plant (Humulus lupulus L.) and has previously been shown to have depigmenting effects in B16F10 mouse melanoma cells; however, studies of its depigmenting efficacy in human melanocytes are still lacking. In this work, we explored the effects of XH on melanogenesis in MNT-1 human melanoma cells and normal human melanocytes from darkly-pigmented skin (HEM-DP). XH was screened for cytotoxicity over 48 h, and subsequently tested on melanogenesis in MNT-1 cells. XH was further tested in HEM-DP cells for melanin synthesis and melanosome export; dendricity was quantitated to assess effects on melanosome export. Melanosome degradation was studied in human keratinocytes (HaCaT). Our results showed that XH inhibited melanin synthesis in MNT-1 cells at 30 μM but increased intracellular tyrosinase activity without affecting ROS levels. In HEM-DP cells, XH robustly suppressed cellular tyrosinase activity at nontoxic concentrations (2.5–5 μM) without any effect on melanin synthesis. However, XH inhibited melanosome export by reducing dendrite number and total dendrite length. Further testing in HaCaT cells demonstrated that XH induced melanosome degradation at low micromolar concentrations without any cytotoxicity. In summary, our results demonstrate that XH at low micromolar concentrations might hold promise as a potent inhibitor of human pigmentation by primarily targeting melanin export and melanin degradation. Further studies to elucidate the signaling mechanisms of action of melanosome export inhibition by XH and in vivo efficacy are warranted. 相似文献
7.
Gunjan Arora Andaleeb Sajid Mary Diana Arulanandh Richa Misra Anshika Singhal Santosh Kumar Lalit K. Singh Abid R. Mattoo Rishi Raj Souvik Maiti Sharmila Basu-Modak Yogendra Singh 《Biometals》2013,26(5):715-730
Bacillus anthracis Ser/Thr protein kinase PrkC (BasPrkC) is important for virulence of the bacterium within the host. Homologs of PrkC and its cognate phosphatase PrpC (BasPrpC) are the most conserved mediators of signaling events in diverse bacteria. BasPrkC homolog in Bacillus subtilis regulates critical processes like spore germination and BasPrpC modulates the activity of BasPrkC by dephosphorylation. So far, biochemical and genetic studies have provided important insights into the roles of BasPrkC and BasPrpC; however, regulation of their activities is not known. We studied the regulation of BasPrkC/BasPrpC pair and observed that Zn2+ metal ions can alter their activities. Zn2+ promotes BasPrkC kinase activity while inhibits the BasPrpC phosphatase activity. Concentration of Zn2+ in growing B. anthracis cells was found to vary with growth phase. Zn2+ was found to be lowest in log phase cells while it was highest in spores. This variation in Zn2+ concentration is significant for understanding the antagonistic activities of BasPrkC/BasPrpC pair. Our results also show that BasPrkC activity is modulated by temperature changes and kinase inhibitors. Additionally, we identified Elongation Factor Tu (BasEf-Tu) as a substrate of BasPrkC/BasPrpC pair and assessed the impact of their regulation on BasEf-Tu phosphorylation. Based on these results, we propose Zn2+ as an important regulator of BasPrkC/BasPrpC mediated phosphorylation cascades. Thus, this study reveals additional means by which BasPrkC can be activated leading to autophosphorylation and substrate phosphorylation. 相似文献
8.
Sajid A Arora G Gupta M Singhal A Chakraborty K Nandicoori VK Singh Y 《Journal of bacteriology》2011,193(19):5347-5358
During protein synthesis, translation elongation factor Tu (Ef-Tu) is responsible for the selection and binding of the cognate aminoacyl-tRNA to the acceptor site on the ribosome. The activity of Ef-Tu is dependent on its interaction with GTP. Posttranslational modifications, such as phosphorylation, are known to regulate the activity of Ef-Tu in several prokaryotes. Although a study of the Mycobacterium tuberculosis phosphoproteome showed Ef-Tu to be phosphorylated, the role of phosphorylation in the regulation of Ef-Tu has not been studied. In this report, we show that phosphorylation of M. tuberculosis Ef-Tu (MtbEf-Tu) by PknB reduced its interaction with GTP, suggesting a concomitant reduction in the level of protein synthesis. Overexpression of PknB in Mycobacterium smegmatis indeed reduced the level of protein synthesis. MtbEf-Tu was found to be phosphorylated by PknB on multiple sites, including Thr118, which is required for optimal activity of the protein. We found that kirromycin, an Ef-Tu-specific antibiotic, had a significant effect on the nucleotide binding of unphosphorylated MtbEf-Tu but not on the phosphorylated protein. Our results show that the modulation of the MtbEf-Tu-GTP interaction by phosphorylation can have an impact on cellular protein synthesis and growth. These results also suggest that phosphorylation can change the sensitivity of the protein to the specific inhibitors. Thus, the efficacy of an inhibitor can also depend on the posttranslational modification(s) of the target and should be considered during the development of the molecule. 相似文献
9.
Garufi G Hendrickx AP Beeri K Kern JW Sharma A Richter SG Schneewind O Missiakas D 《Journal of bacteriology》2012,194(16):4312-4321
Lipoteichoic acid (LTA), a glycerol phosphate polymer, is a component of the envelope of Gram-positive bacteria that has hitherto not been identified in Bacillus anthracis, the causative agent of anthrax. LTA synthesis in Staphylococcus aureus and other microbes is catalyzed by the product of the ltaS gene, a membrane protein that polymerizes polyglycerol phosphate from phosphatidyl glycerol. Here we identified four ltaS homologues, designated ltaS1 to -4, in the genome of Bacillus anthracis. Polyglycerol phosphate-specific monoclonal antibodies were used to detect LTA in the envelope of B. anthracis strain Sterne (pXO1(+) pXO2(-)) vegetative forms. B. anthracis mutants lacking ltaS1, ltaS2, ltaS3, or ltaS4 did not display defects in growth or LTA synthesis. In contrast, B. anthracis strains lacking both ltaS1 and ltaS2 were unable to synthesize LTA and exhibited reduced viability, altered envelope morphology, aberrant separation of vegetative forms, and decreased sporulation efficiency. Expression of ltaS1 or ltaS2 alone in B. anthracis as well as in other microbes was sufficient for polyglycerol phosphate synthesis. Thus, similar to S. aureus, B. anthracis employs LtaS enzymes to synthesize LTA, an envelope component that promotes bacterial growth and cell division. 相似文献
10.