首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  5篇
  2019年   1篇
  2018年   2篇
  2015年   1篇
  2008年   1篇
排序方式: 共有5条查询结果,搜索用时 9 毫秒
1
1.
2.
Analyzing and optimizing biological models is often identified as a research priority in biomedical engineering. An important feature of a model should be the ability to find the best condition in which an organism has to be grown in order to reach specific optimal output values chosen by the researcher. In this work, we take into account a mitochondrial model analyzed with flux-balance analysis. The optimal design and assessment of these models is achieved through single- and/or multi-objective optimization techniques driven by epsilon-dominance and identifiability analysis. Our optimization algorithm searches for the values of the flux rates that optimize multiple cellular functions simultaneously. The optimization of the fluxes of the metabolic network includes not only input fluxes, but also internal fluxes. A faster convergence process with robust candidate solutions is permitted by a relaxed Pareto dominance, regulating the granularity of the approximation of the desired Pareto front. We find that the maximum ATP production is linked to a total consumption of NADH, and reaching the maximum amount of NADH leads to an increasing request of NADH from the external environment. Furthermore, the identifiability analysis characterizes the type and the stage of three monogenic diseases. Finally, we propose a new methodology to extend any constraint-based model using protein abundances.  相似文献   
3.

Background

The study of cell metabolism is becoming central in several fields such as biotechnology, evolution/adaptation and human disease investigations. Here we present CiliateGEM, the first metabolic network reconstruction draft of the freshwater ciliate Tetrahymena thermophila. We also provide the tools and resources to simulate different growth conditions and to predict metabolic variations. CiliateGEM can be extended to other ciliates in order to set up a meta-model, i.e. a metabolic network reconstruction valid for all ciliates.Ciliates are complex unicellular eukaryotes of presumably monophyletic origin, with a phylogenetic position that is equal from plants and animals. These cells represent a new concept of unicellular system with a high degree of species, population biodiversity and cell complexity. Ciliates perform in a single cell all the functions of a pluricellular organism, including locomotion, feeding, digestion, and sexual processes.

Results

After generating the model, we performed an in-silico simulation with the presence and absence of glucose. The lack of this nutrient caused a 32.1% reduction rate in biomass synthesis. Despite the glucose starvation, the growth did not stop due to the use of alternative carbon sources such as amino acids.

Conclusions

The future models obtained from CiliateGEM may represent a new approach to describe the metabolism of ciliates. This tool will be a useful resource for the ciliate research community in order to extend these species as model organisms in different research fields. An improved understanding of ciliate metabolism could be relevant to elucidate the basis of biological phenomena like genotype-phenotype relationships, population genetics, and cilia-related disease mechanisms.
  相似文献   
4.
5.
Allografts of articular cartilage are both used clinically for tissue-transplantation procedures and experimentally as model systems to study the physiological behavior of chondrocytes in their native extracellular matrix. Long-term maintenance of allograft tissue is challenging. Chemical mediators in poorly defined culture media can stimulate cells to quickly degrade their surrounding extracellular matrix. This is particularly true of juvenile cartilage which is generally more responsive to chemical stimuli than mature tissue. By carefully modulating the culture media, however, it may be possible to preserve allograft tissue over the long-term while maintaining its original mechanical and biochemical properties. In this study juvenile bovine cartilage explants (both chondral and osteochondral) were cultured in both chemically defined medium and serum-supplemented medium for up to 6 weeks. The mechanical properties and biochemical content of explants cultured in chemically defined medium were enhanced after 2 weeks in culture and thereafter remained stable with no loss of cell viability. In contrast, the mechanical properties of explants in serum-supplemented medium were degraded by ( approximately 70%) along with a concurrent loss of biochemical content (30-40% GAG). These results suggest that long-term maintenance of allografts can be extended significantly by the use of a chemically defined medium.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号