首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   644篇
  免费   58篇
  702篇
  2023年   4篇
  2022年   13篇
  2021年   15篇
  2020年   15篇
  2019年   17篇
  2018年   17篇
  2017年   12篇
  2016年   31篇
  2015年   53篇
  2014年   32篇
  2013年   49篇
  2012年   60篇
  2011年   75篇
  2010年   43篇
  2009年   34篇
  2008年   35篇
  2007年   47篇
  2006年   36篇
  2005年   42篇
  2004年   23篇
  2003年   24篇
  2002年   17篇
  2001年   1篇
  2000年   1篇
  1998年   2篇
  1995年   1篇
  1994年   1篇
  1987年   1篇
  1975年   1篇
排序方式: 共有702条查询结果,搜索用时 15 毫秒
1.
2.
The Golgi apparatus is a highly dynamic organelle whose organization is maintained by a proteinaceous matrix, cytoskeletal components, and inositol phospholipids. In mammalian cells, disassembly of the organelle occurs reversibly at the onset of mitosis and irreversibly during apoptosis. Several pharmacological agents including nocodazole, brefeldin A (BFA), and primary alcohols (1-butanol) induce reversible fragmentation of the Golgi apparatus. To dissect the mechanism of Golgi reassembly, rat NRK and GH3 cells were treated with 1-butanol, BFA, or nocodazole. During washout of 1-butanol, clathrin, a ubiquitous coat protein implicated in vesicle traffic at the trans-Golgi network and plasma membrane, and abundant clathrin coated vesicles were recruited to the region of nascent Golgi cisternae. Knockdown of endogenous clathrin heavy chain showed that the Golgi apparatus failed to reform efficiently after BFA or 1-butanol removal. Instead, upon 1-butanol washout, it maintained a compact, tight morphology. Our results suggest that clathrin is required to reassemble fragmented Golgi elements. In addition, we show that after butanol treatment the Golgi apparatus reforms via an initial compact intermediate structure that is subsequently remodeled into the characteristic interphase lace-like morphology and that reassembly requires clathrin.  相似文献   
3.
PROPPINs (β-propellers that bind polyphosphoinositides) are a family of PtdIns3P- and PtdIns(3,5)P2-binding proteins that play an important role in autophagy. We analyzed PROPPIN-membrane binding through isothermal titration calorimetry (ITC), stopped-flow measurements, mutagenesis studies, and molecular dynamics (MD) simulations. ITC measurements showed that the yeast PROPPIN family members Atg18, Atg21, and Hsv2 bind PtdIns3P and PtdIns(3,5)P2 with high affinities in the nanomolar to low-micromolar range and have two phosphoinositide (PIP)-binding sites. Single PIP-binding site mutants have a 15- to 30-fold reduced affinity, which explains the requirement of two PIP-binding sites in PROPPINs. Hsv2 bound small unilamellar vesicles with a higher affinity than it bound large unilamellar vesicles in stopped-flow measurements. Thus, we conclude that PROPPIN membrane binding is curvature dependent. MD simulations revealed that loop 6CD is an anchor for membrane binding, as it is the region of the protein that inserts most deeply into the lipid bilayer. Mutagenesis studies showed that both hydrophobic and electrostatic interactions are required for membrane insertion of loop 6CD. We propose a model for PROPPIN-membrane binding in which PROPPINs are initially targeted to membranes through nonspecific electrostatic interactions and are then retained at the membrane through PIP binding.  相似文献   
4.
The International Journal of Life Cycle Assessment - Life cycle assessment (LCA) is an internationally accepted method to assess the environmental impacts of buildings. A major methodological...  相似文献   
5.

Mutations in nuclear-encoded protein subunits of the mitochondrial ribosome are an increasingly recognised cause of oxidative phosphorylation system (OXPHOS) disorders. Among them, mutations in the MRPL44 gene, encoding a structural protein of the large subunit of the mitochondrial ribosome, have been identified in four patients with OXPHOS defects and early-onset hypertrophic cardiomyopathy with or without additional clinical features. A 23-year-old individual with cardiac and skeletal myopathy, neurological involvement, and combined deficiency of OXPHOS complexes in skeletal muscle was clinically and genetically investigated. Analysis of whole-exome sequencing data revealed a homozygous mutation in MRPL44 (c.467 T?>?G), which was not present in the biological father, and a region of homozygosity involving most of chromosome 2, raising the possibility of uniparental disomy. Short-tandem repeat and genome-wide SNP microarray analyses of the family trio confirmed complete maternal uniparental isodisomy of chromosome 2. Mitochondrial ribosome assembly and mitochondrial translation were assessed in patient derived-fibroblasts. These studies confirmed that c.467 T?>?G affects the stability or assembly of the large subunit of the mitochondrial ribosome, leading to impaired mitochondrial protein synthesis and decreased levels of multiple OXPHOS components. This study provides evidence of complete maternal uniparental isodisomy of chromosome 2 in a patient with MRPL44-related disease, and confirms that MRLP44 mutations cause a mitochondrial translation defect that may present as a multisystem disorder with neurological involvement.

  相似文献   
6.
7.
We have combined mineralogy, organic geochemistry and molecular microbiology to study hydrothermal deposits from Solfatara Crater, a geologically young volcanic formation (~4,000 years old) displaying hot (45–95°C) and acidic (pH 1.7) mud pools and fumaroles. The search for inorganic (mineral) biosignatures revealed the presence of delicate structures, most likely mineralized extracellular polymers (EPSs), and the presence of potential biologically induced minerals: sulfides, sulfates (barite and alunite), elemental sulfur, and iron oxides. Geochemical analyses revealed a low total organic carbon content, 0.13 to 0.53%, displaying δ13C values from ?17.09 to ?27.39‰, and total nitrogen contents from 0.03 to 0.12%, which are characteristic of hydrothermal systems and suggest the presence of autotrophic carbon fixation. Lipid biomarker analysis showed the presence of hopanoids and linear alkanes, and the absence of detectable steroids, implying the occurrence of bacteria in our samples. We constructed 16S rRNA gene libraries from the environmental samples. Most environmental sequences obtained were affiliated to the Alpha- and Betaproteobacteria (Hydrogenophilus-like), the Acidobacteria, and to a lesser extent, the Gammaproteobacteria and Actinobacteria. When known, the closest cultivated relatives were often thermophilic or thermotolerant bacteria oxidizing iron, hydrogen, or methane/methanol, suggesting an important microbial contribution to the formation of biominerals.  相似文献   
8.
Using a high throughput screen, we have identified a family of 12-residue long peptides that spontaneously translocate across membranes. These peptides function by a poorly understood mechanism that is very different from that of the well-known, highly cationic cell penetrating peptides such as the tat peptide from HIV. The newly discovered translocating peptides can carry polar cargoes across synthetic bilayers and across cellular membranes quickly and spontaneously without disrupting the membrane. Here we report on the biophysical characterization of a representative translocating peptide from the selected family, TP2, as well as a negative control peptide, ONEG, from the same library. We measured the binding of the two peptides to lipid bilayers, their secondary structure propensities, their dispositions in bilayers by neutron diffraction, and the response of the bilayer to the peptides. Compared to the negative control, TP2 has a greater propensity for membrane partitioning, although it still binds only weakly, and a higher propensity for secondary structure. Perhaps most revealing, TP2 has the ability to penetrate deep into the bilayer without causing significant bilayer perturbations, a property that may help explain its ability to translocate without bilayer permeabilization.  相似文献   
9.
10.
The blood‐brain barrier (BBB) is essential for a functional neurovascular unit. Most studies focused on the cells forming the BBB, but very few studied the basement membrane (BM) of brain capillaries in ageing. We used transmission electron microscopy and electron tomography to investigate the BM of the BBB in ageing C57BL/6J mice. The thickness of the BM of the BBB from 24‐month‐old mice was double as compared with that of 6‐month‐old mice (107 nm vs 56 nm). The aged BBB showed lipid droplets gathering within the BM which further increased its thickness (up to 572 nm) and altered its structure. The lipids appeared to accumulate toward the glial side of the BM. Electron tomography showed that the lipid‐rich BM regions are located in small pockets formed by the end‐feet of astrocytes. These findings suggest an imbalance of the lipid metabolism and that may precede the structural alteration of the BM. These alterations may favour the accretion of abnormal proteins that lead to neurodegeneration in ageing. These findings warrant further investigation of the BM of brain capillaries and of adjoining cells as potential targets for future therapies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号