首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   4篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   5篇
  2010年   2篇
  2009年   2篇
  2008年   7篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   4篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
  1989年   1篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1973年   1篇
  1972年   2篇
排序方式: 共有62条查询结果,搜索用时 281 毫秒
1.
ABSTRACT

We present an easy test for rapid visualization of viral DNA assemblies in infected cell cytoplasm. We selected the best stains for nuclear staining: Nile blue A, Bismarck brown, gallocyanin chrome alum, methyl green pyronin and azure II. None of the staining techniques is fluorescent, which facilitates their use in everyday experiments. Methyl green is most promising for routine detection of viral DNA assemblies in the cytoplasm; the procedure enables ready detection of viral DNA accumulation in the cytoplasm.  相似文献   
2.
Cathespin B has been purified 750-fold to apparent homogeneity from human and bovine brain cortex using ammonium sulfate fractionation (30–70%), chromatography on Sephadex G-100, CM-Sephadex C-50, and concanavalin A-Sepharose. Enzyme was assayed fluorometrically at pH 4.0 with pyridoxyl-hemoglobin in the presence of 1 mM DTT and 1 mM EDTA. Properties of the enzyme from the two sources proved to be similar. On disc PAGE the purified preparation produced two bands associated with proteinase activity that are due to existence of two multiple forms of brain cathepsin B with pI 6.1 and 6.8. The enzyme is completely inactivated by thiol-blocking reagents, leupeptin, E-64, and demands thiol compounds for its ultimate activity. Z-Phe-Ala-CHN2 is a potent inhibitor of the enzyme (K 2nd=1280 M−1s−1) in contrast to Z-Phe-Phe-CHN2 (K 2nd=264 M−1s−1). pH optimum in the reaction of hydrolysis of Pxy-Hb is 4.0–6.0,K M(app.) =10−5 M. Cathepsin B splits azocasein: pH optimum 5.0–6.0,K M(app.)=2.2·10−5 M, but inclusion of urea in the incubation medium depresses the azocaseinolytic activity of the enzyme 1.5-fold. It does not split Lys-NNap, Arg-NMec and is not inhibited by bestatin. The specific activity of brain cathepsin B with Z-Arg-Arg-NNapOMe at pH 6.0 is 10-fold higher than with Bz-Arg-NNap, Z-Gly-Gly-Arg-NNap is a poor substrate. With Z-Arg-Arg-NMec and Bz-Phe-Val-Arg-NMec the specific acitivity is 80 and 35%, respectively of that with Z-Phe-Arg-NMec. Special Issue dedicated to Dr. Eugene Kreps.  相似文献   
3.
Changes in glucose transport and metabolism in skeletal muscles of the obese-diabetic mice (db/db) was characterized using the perfused mouse hindquarter preparation. Metabolism of [5-3H]glucose, uptake of 3-O-[methyl-3H]glucose (methylglucose) and [2-14C]deoxyglucose (deoxyglucose) was studied under resting, electrically stimulated contracting, and insulin-stimulated conditions. Basal rate of methylglucose uptake was 255 +/- 18 and 180 +/- 9 microliter/15 min per ml intracellular fluid space for lean and db/db mice, respectively. The V- of methylglucose transport was decreased with no change in Km in the db/db mice. Both electrical stimulation and insulin (1/mU/ml) increased methylglucose uptake rate 2-fold in both lean and obese mice. We observed no significant change in insulin sensitivity in the db/db mice in stimulating methylglucose uptake which was subnormal under all conditions. Similar results were obtained using deoxyglucose. Likewise, uptake of glucose and 3H2O production from [5-3H]glucose were significantly reduced, both at rest and during electrically stimulated contraction in the db/db mouse. However, lactate production in the electrically stimulated db/db mouse preparations was not significantly different from that in the lean mice. These data suggest a major contribution from an impaired glucose transport activity to the reduction in glucose metabolism in the db/db mouse skeletal muscle.  相似文献   
4.
5.
6.
The opportunistic pathogen Pseudomonas aeruginosa is among the main colonizers of the lungs of cystic fibrosis (CF) patients. We have isolated and sequenced several P. aeruginosa isolates from the sputum of CF patients and compared them with each other and with the model strain PAO1. Phenotypic analysis of CF isolates showed significant variability in colonization and virulence-related traits suggesting different strategies for adaptation to the CF lung. Genomic analysis indicated these strains shared a large set of core genes with the standard laboratory strain PAO1, and identified the genetic basis for some of the observed phenotypic differences. Proteomics revealed that in a conventional laboratory medium PAO1 expressed 827 proteins that were absent in the CF isolates while the CF isolates shared a distinctive signature set of 703 proteins not detected in PAO1. PAO1 expressed many transporters for the uptake of organic nutrients and relatively few biosynthetic pathways. Conversely, the CF isolates expressed a narrower range of transporters and a broader set of metabolic pathways for the biosynthesis of amino acids, carbohydrates, nucleotides and polyamines. The proteomic data suggests that in a common laboratory medium PAO1 may transport a diverse set of “ready-made” nutrients from the rich medium, whereas the CF isolates may only utilize a limited number of nutrients from the medium relying mainly on their own metabolism for synthesis of essential nutrients. These variations indicate significant differences between the metabolism and physiology of P. aeruginosa CF isolates and PAO1 that cannot be detected at the genome level alone. The widening gap between the increasing genomic data and the lack of phenotypic data means that researchers are increasingly reliant on extrapolating from genomic comparisons using experimentally characterized model organisms such as PAO1. While comparative genomics can provide valuable information, our data suggests that such extrapolations may be fraught with peril.  相似文献   
7.
Chlorophyll is a central player in harvesting light energy for photosynthesis, yet the rate-limiting steps of chlorophyll catabolism and the regulation of the catabolic enzymes remain unresolved. To study the role and regulation of chlorophyllase (Chlase), the first enzyme of the chlorophyll catabolic pathway, we expressed precursor and mature versions of citrus (Citrus sinensis) Chlase in two heterologous plant systems: (1) squash (Cucurbita pepo) plants using a viral vector expression system; and (2) transiently transformed tobacco (Nicotiana tabacum) protoplasts. Expression of full-length citrus Chlase resulted in limited chlorophyll breakdown in protoplasts and no visible leaf phenotype in whole plants, whereas expression of a Chlase version lacking the N-terminal 21 amino acids (ChlaseDeltaN), which corresponds to the mature protein, led to extensive chlorophyll breakdown in both tobacco protoplasts and squash leaves. ChlaseDeltaN-expressing squash leaves displayed a dramatic chlorotic phenotype in plants grown under low-intensity light, whereas under natural light a lesion-mimic phenotype occurred, which was demonstrated to follow the accumulation of chlorophyllide, a photodynamic chlorophyll breakdown product. Full-length and mature citrus Chlase versions were localized to the chloroplast membrane fraction in expressing tobacco protoplasts, where processing of the N-terminal 21 amino acids appears to occur. Results obtained in both plant systems suggest that Chlase functions as a rate-limiting enzyme in chlorophyll catabolism controlled via posttranslational regulation.  相似文献   
8.
The tactile and thermal sensitivity of diverse regions of the human body have been documented extensively, with one exception being the scalp. Additionally, sensory changes may accompany the hair loss from the scalp in androgen-related alopecia (ARA), but formal quantitative sensory testing (QST) has not been reported in respect of this. Therefore, light touch detection thresholds were obtained at nine scalp sites and one forehead site, using Semmes-Weinstein filaments (Von Frey hairs), and for warming and cooling from skin baseline temperature, using 28 and 256 mm(2) thermodes. Affective, thermal, and nociceptive sensations experienced at thermal detection threshold were quantified. Thirty-two male participants were recruited, 10 of whom had normal hair coverage, 12 of whom had shaved scalp but with potentially normal hair coverage, and 10 of whom exhibited ARA to some extent. The scalp was relatively insensitive to tactile and thermal stimulation at all tested sites, especially so along the midline and near the apex of the skull. Threshold level warm stimuli were rated less pleasant, the less sensitive the test site. After correction for age-related changes in sensitivity, bald scalp sites were found more sensitive to cooling than the same sites when shaved, consistent with prior informal reports of increased sensitivity for some scalp sensations in ARA. QST on hair-covered sites was subject to methodological issues that render such testing non-ideal, such as bias in measurement of resting skin temperatures, and the near impossibility of delivering filament stimuli to the scalp skin without disturbing neighboring hairs.  相似文献   
9.
Four hexokinase (LeHXK1–4) and four fructokinase (LeFRK1–4) genes were identified in tomato plants. Previous GFP fusion studies indicate that the gene product of LeHXK3 is associated with the mitochondria while that of LeHXK4 is located within plastids. In this study we found that the enzyme encoded by the fructokinase gene LeFRK3 is also located within plastids. The presence of LeFrk3 enzyme in plastids raises the question of the origin of fructose in these organelles. The other three FRKs enzymes, LeFrk1&2&4, are located in the cytosol. Unlike LeFrk1&2&4, the two additional HXKs, LeHxk1&2, share a common membrane anchor domain and are associated with the mitochondria similar to LeHxk3. The difference in the locations of the cytoplasmic FRK and HXK isozymes suggests that glucose phosphorylation is confined to defined special intracellular localizations while fructose phosphorylation is less confined.Contribution from the Agriculture Research Organization, The Volcani Center, Bet Dagan, Israel, No. 126/2006 series.  相似文献   
10.
Many plants and animals are defended from predation or herbivory by inhibitory secondary metabolites, which in the marine environment are very common among sessile organisms. Among bacteria, where there is the greatest metabolic potential, little is known about chemical defenses against bacterivorous consumers. An emerging hypothesis is that sessile bacterial communities organized as biofilms serve as bacterial refuge from predation. By testing growth and survival of two common bacterivorous nanoflagellates, we find evidence that chemically mediated resistance against protozoan predators is common among biofilm populations in a diverse set of marine bacteria. Using bioassay-guided chemical and genetic analysis, we identified one of the most effective antiprotozoal compounds as violacein, an alkaloid that we demonstrate is produced predominately within biofilm cells. Nanomolar concentrations of violacein inhibit protozoan feeding by inducing a conserved eukaryotic cell death program. Such biofilm-specific chemical defenses could contribute to the successful persistence of biofilm bacteria in various environments and provide the ecological and evolutionary context for a number of eukaryote-targeting bacterial metabolites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号