首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24474篇
  免费   2113篇
  国内免费   1130篇
  27717篇
  2024年   49篇
  2023年   216篇
  2022年   595篇
  2021年   1049篇
  2020年   605篇
  2019年   772篇
  2018年   834篇
  2017年   699篇
  2016年   888篇
  2015年   1394篇
  2014年   1613篇
  2013年   1865篇
  2012年   2248篇
  2011年   2075篇
  2010年   1304篇
  2009年   1209篇
  2008年   1365篇
  2007年   1243篇
  2006年   1176篇
  2005年   987篇
  2004年   946篇
  2003年   718篇
  2002年   723篇
  2001年   425篇
  2000年   341篇
  1999年   350篇
  1998年   269篇
  1997年   183篇
  1996年   176篇
  1995年   159篇
  1994年   173篇
  1993年   121篇
  1992年   142篇
  1991年   102篇
  1990年   98篇
  1989年   97篇
  1988年   89篇
  1987年   58篇
  1986年   61篇
  1985年   42篇
  1984年   46篇
  1983年   36篇
  1982年   30篇
  1981年   20篇
  1980年   13篇
  1979年   14篇
  1977年   11篇
  1975年   10篇
  1974年   20篇
  1973年   8篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
Ba(2+) current through the L-type Ca(2+) channel inactivates essentially by voltage-dependent mechanisms with fast and slow kinetics. Here we found that slow inactivation is mediated by an annular determinant composed of hydrophobic amino acids located near the cytoplasmic ends of transmembrane segments S6 of each repeat of the alpha(1C) subunit. We have determined the molecular requirements that completely obstruct slow inactivation. Critical interventions include simultaneous substitution of A752T in IIS6, V1165T in IIIS6, and I1475T in IVS6, each preventing in additive manner a considerable fraction of Ba(2+) current from inactivation. In addition, it requires the S405I mutation in segment IS6. The fractional inhibition of slow inactivation in tested mutants caused an acceleration of fast inactivation, suggesting that fast and slow inactivation mechanisms are linked. The channel lacking slow inactivation showed approximately 45% of the sustained Ba(2+) or Ca(2+) current with no indication of decay. The remaining fraction of the current was inactivated with a single-exponential decay (pi(f) approximately 10 ms), completely recovered from inactivation within 100 ms and did not exhibit Ca(2+)-dependent inactivation properties. No voltage-dependent characteristics were significantly changed, consistent with the C-type inactivation model suggesting constriction of the pore as the main mechanism possibly targeted by Ca(2+) sensors of inactivation.  相似文献   
2.
DC‐UbP/UBTD2 is a ubiquitin (Ub) domain‐containing protein first identified from dendritic cells, and is implicated in ubiquitination pathway. The solution structure and backbone dynamics of the C‐terminal Ub‐like (UbL) domain were elucidated in our previous work. To further understand the biological function of DC‐UbP, we then solved the solution structure of the N‐terminal domain of DC‐UbP (DC‐UbP_N) and studied its Ub binding properties by NMR techniques. The results show that DC‐UbP_N holds a novel structural fold and acts as a Ub‐binding domain (UBD) but with low affinity. This implies that the DC‐UbP protein, composing of a combination of both UbL and UBD domains, might play an important role in regulating protein ubiquitination and delivery of ubiquitinated substrates in eukaryotic cells.  相似文献   
3.
Cell division in fertilized sea urchin eggs was reversibly inhibited when the ketoaldehyde phenyl glyoxal (PG) at a concentration of 0.1 mM was added to eggs for ten minutes prior to the formation of the mitotic spindle. We investigated whether inhibition of mitosis was due to PG binding to the cell surface (as previously suggested by Stein and Berestecky, '74) or to some intracellular effect. When 14C-PG was added to eggs, label was readily taken up into the egg cytoplasm; very little label was associated with the egg surface. In the cytoplasm PG combined with equimolar amounts of reduced glutathione (GSH), decreasing the levels of cellular GSH to less than 15% of normal and accounting for at least 50% of the PG taken up by eggs. The concentrations of oxidized and protein-bound glutathione were unaffected by PG treatment. We showed that glyoxalase enzymes were present in sea urchin eggs and were capable of metabolizing the PG-GSH complex, thereby restoring GSH to normal levels after PG was removed from the sea water. Though some other effect of PG cannot be ruled out, the major fate of PG in eggs was to combine with GSH, and the transient decrease in GSH which resulted could lead to inhibition of mitosis. While other reports (Nath and Rebhun, '76; Oliver et al., '76) have shown that reagents which oxidize GSH disrupt microtubule-related events, our results showed that such inhibition could be caused by decreased GSH levels alone.  相似文献   
4.
5.
In Mytilus and Leucophaea the high-affinity binding site density is significantly lower in old animals than in young animals, whereas the low-affinity site density remains unchanged. In Mytilus the estimated met-enkephalin and met-enkephalin-Arg6-Phe7 levels are significantly higher in old than in young animals. In Leucophaea only the met-enkephalin level can be determined, and it is also higher in old animals. The decrease in the high-affinity binding site density and the corresponding increase in endogenous enkephalin levels suggest the existence of an opioid compensatory mechanism associated with the aging process. In Mytilus there is a demonstrated decrease with age in intraganglionic dopamine levels in response to applied opiates. In addition, the inhibition of dopamine-stimulated adenylate cyclase activity by opiates also decreases in older animals. In Leucophaea the sex difference in opioid binding densities diminishes with age.  相似文献   
6.
Recent advances in the fields of chromatography, mass spectrometry, and chemical analysis have greatly improved the efficiency with which carotenoids can be extracted and analyzed from avian plumage. Prior to these technological developments, Brush (1968) [1] concluded that the burgundy-colored plumage of the male pompadour Cotinga Xipholena punicea is produced by a combination of blue structural color and red carotenoids, including astaxanthin, canthaxanthin, isozeaxanthin, and a fourth unidentified, polar carotenoid. However, X. punicea does not in fact exhibit any structural coloration. This work aims to elucidate the carotenoid pigments of the burgundy color of X. punicea plumage using advanced analytical methodology. Feathers were collected from two burgundy male specimens and from a third aberrant orange-colored specimen. Pigments were extracted using a previously published technique (McGraw et al. (2005) [2]), separated by high-performance liquid chromatography (HPLC), and analyzed by UV/Vis absorption spectroscopy, chemical analysis, mass spectrometry, nuclear magnetic resonance (NMR), and comparison with direct synthetic products. Our investigation revealed the presence of eight ketocarotenoids, including astaxanthin and canthaxanthin as reported previously by Brush (1968) [1]. Six of the ketocarotenoids contained methoxyl groups, which is rare for naturally-occurring carotenoids and a novel finding in birds. Interestingly, the carotenoid composition was the same in both the burgundy and orange feathers, indicating that feather coloration in X. punicea is determined not only by the presence of carotenoids, but also by interactions between the bound carotenoid pigments and their protein environment in the barb rami and barbules. This paper presents the first evidence of metabolically-derived methoxy-carotenoids in birds.  相似文献   
7.
The purpose of this study was to measure the changes and rates of adaptation of left ventricular volumes at the onset of exercise. Eight asymptomatic subjects, in whom intramyocardial markers had been implanted 3-6 years previously during aortocoronary bypass surgery, exercised in the supine position at a constant workload of 73.6 W for 5 min. Six also exercised first at 16.4 W, and then against a workload which progressively increased by 8.2 W every 15 s. Cardiac volumes were measured by computer assisted analysis of the motion of the implanted markers. In the constant workload test, cardiac output increased rapidly from 5.7 +/- 1 min-1 to 10.3 +/- 1.9 1 min-1 by 2 min and then increased more slowly to 10.8 +/- 2.0 1 min-1 by 5 min. The cardiac output increase was mainly due to an increase in heart rate from 68 +/- 12 beats min-1 to 120 +/- 16 beats min-1 with minimal changes in stroke volume. The time constant for the early increase in cardiac output was 45s and for heart rate, 35s. With progressively increasing workloads, there was an almost linear increase of heart rate and cardiac output, but these increased at a slower rate than during the early phase of the constant load exercise test. In conclusion: rapid changes in cardiac output during supine exercise were produced by changes in heart rate; changes in stroke volume provided minor adjustments to cardiac output; the end-diastolic volume was almost constant.  相似文献   
8.
9.
10.
Mitogen-activated protein kinase (MAPK) pathways are activated by a plethora of stimuli. The literature is filled with papers describing the activation of different MAPKs by almost any stimulus or insult imaginable to cells. In this review, we use signal transduction wiring diagrams to illustrate putative upstream regulators for the MAPK kinase kinases, MEKK1, 2, and 3. Targeted gene disruption of MEKK1, 2, or 3 defined phenotypes for each MEKK associated with loss of specific MAPK regulation. Genetic analysis of MEKK function clearly defines specific components of the wiring diagram that require MEKK1, 2, or 3 for physiological responses. We propose that signal transduction network wiring diagrams are valuable tools for hypothesis building and filtering physiologically relevant phenotypic responses from less connected protein relations in the regulation of MAPK pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号