首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   438篇
  免费   25篇
  国内免费   2篇
  465篇
  2023年   9篇
  2022年   13篇
  2021年   23篇
  2020年   21篇
  2019年   16篇
  2018年   24篇
  2017年   8篇
  2016年   23篇
  2015年   30篇
  2014年   19篇
  2013年   33篇
  2012年   37篇
  2011年   35篇
  2010年   19篇
  2009年   16篇
  2008年   15篇
  2007年   19篇
  2006年   16篇
  2005年   10篇
  2004年   12篇
  2003年   10篇
  2002年   10篇
  2001年   7篇
  2000年   4篇
  1999年   8篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1985年   4篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1976年   1篇
  1946年   1篇
排序方式: 共有465条查询结果,搜索用时 0 毫秒
1.
2.
3.
4.
Due to their peculiar stereochemistry and numerous biological activities, lignans are of widespread interest. As only a few biosynthetic steps have been clarified to date, we aimed to further resolve the molecular basis of lignan biosynthesis. To this end, we first established that the biologically active lignan (−)-hinokinin could be isolated from in vitro cultures of Linum corymbulosum. Two hypothetical pathways were outlined for the biosynthesis of (−)-hinokinin. In both pathways, (+)-pinoresinol serves as the primary substrate. In the first pathway, pinoresinol is reduced via lariciresinol to secoisolariciresinol by a pinoresinol–lariciresinol reductase, and methylenedioxy bridges are formed later. In the second pathway, pinoresinol itself is the substrate for formation of the methylenedioxy bridges, resulting in consecutive production of piperitol and sesamin. To determine which of the proposed hypothetical pathways acts in vivo , we first isolated several cDNAs encoding one pinoresinol-lariciresinol reductase ( PLR-Lc1 ), two phenylcoumaran benzylic ether reductases ( PCBER-Lc1 and PCBER-Lc2 ), and two PCBER-like proteins from a cDNA library of L. corymbulosum. PLR-Lc1 was found to be enantiospecific for the conversion of (+)-pinoresinol to (−)-secoisolariciresinol, which can be further converted to give (−)-hinokinin. Hairy root lines with significantly reduced expression levels of the plr-Lc1 gene were established using RNAi technology. Hinokinin accumulation was reduced to non-detectable levels in these lines. Our results strongly indicate that PLR-Lc1 participates in (−)-hinokinin biosynthesis in L. corymbulosum by the first of the two hypothetical pathways via (−)-secoisolariciresinol.  相似文献   
5.
The cysteine carboxypeptidase cathepsin X has been recognized as an important player in degenerative processes during normal aging and in pathological conditions. In this study we identify isozymes alpha- and gamma-enolases as targets for cathepsin X. Cathepsin X sequentially cleaves C-terminal amino acids of both isozymes, abolishing their neurotrophic activity. Neuronal cell survival and neuritogenesis are, in this way, regulated, as shown on pheochromocytoma cell line PC12. Inhibition of cathepsin X activity increases generation of plasmin, essential for neuronal differentiation and changes the length distribution of neurites, especially in the early phase of neurite outgrowth. Moreover, cathepsin X inhibition increases neuronal survival and reduces serum deprivation induced apoptosis, particularly in the absence of nerve growth factor. On the other hand, the proliferation of cells is decreased, indicating induction of differentiation. Our study reveals enolase isozymes as crucial neurotrophic factors that are regulated by the proteolytic activity of cathepsin X.  相似文献   
6.
The L-type Ca current (ICa,L), essential for normal cardiac function, also regulates dynamic action potential (AP) properties that promote ventricular fibrillation. Blocking ICa,L can prevent ventricular fibrillation, but only at levels suppressing contractility. We speculated that, instead of blocking ICa,L, modifying its shape by altering kinetic features could produce equivalent anti-fibrillatory effects without depressing contractility. To test this concept experimentally, we overexpressed a mutant Ca-insensitive calmodulin (CaM1234) in rabbit ventricular myocytes to inhibit Ca-dependent ICa,L inactivation, combined with the ATP-sensitive K current agonist pinacidil or ICa,L blocker verapamil to maintain AP duration (APD) near control levels. Cell shortening was enhanced in pinacidil-treated myocytes, but depressed in verapamil-treated myocytes. Both combinations flattened APD restitution slope and prevented APD alternans, similar to ICa,L blockade. To predict the arrhythmogenic consequences, we simulated the cellular effects using a new AP model, which reproduced flattening of APD restitution slope and prevention of APD/Cai transient alternans but maintained a normal Cai transient. In simulated two-dimensional cardiac tissue, these changes prevented the arrhythmogenic spatially discordant APD/Cai transient alternans and spiral wave breakup. These findings provide a proof-of-concept test that ICa,L can be targeted to increase dynamic wave stability without depressing contractility, which may have promise as an antifibrillatory strategy.  相似文献   
7.
In the present study we analyzed stability of plasmid content in 34 Borrelia strains of three different species (13 Borrelia afzelii, 10 Borrelia garinii and 11 Borrelia burgodorferi sensu stricto) using pulse field gel electrophoresis (PFGE). During long-term in vitro cultivation consisting of 50 passages, plasmid loss was established in 46% of B. afzelii, 40% of B. garinii and 36% of B. burgdorferi sensu stricto strains. Loss of plasmids occurred as early as between the 5th and 10th passage, affected only plasmids in the range 9-41 kb but not plasmids in the range 50-68 kb and manifested with the loss of one to up to three plasmids.  相似文献   
8.
Cell detachment procedures can cause severe damage to cells. Many studies require cells to be detached before measurements; therefore, research on cells that have been grown attached to the bottom of the culture dish and later detached represents a special problem with respect to the experimental results when the properties of cell membranes undergo small changes such as in spectroscopic studies of membrane permeability. We characterized the influence of three different detachment procedures: cell scraping by rubber policeman, trypsinization and a citrate buffer treatment on V‐79 cells in the plateau phase of growth (arrested in G1). We have measured cell viability by a dye‐exclusion test; nitroxide reduction kinetics and membrane fluidity by EPR (electron paramagnetic resonance) method using the lipophilic spin‐probe MeFASL(10,3) (5‐doxylpalmitoyl‐methylester), which partitions mainly in cell membranes and the hydrophilic spin‐probe TEMPONE (4‐oxo‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl). The resulting cell damage due to the detachment process was observed with SEM (scanning electron microscopy). We found out that cell viability was 91% for trypsin treatment, 85% for citrate treatment and 70% for cell scraping. Though the plasma membrane was mechanically damaged by scraping, the membrane domain structure was not significantly altered compared with other detachment methods. On the other hand, the spin‐probe reduction rate, which depends both on the transport across plasma membrane as well as on metabolic properties of cells, was the highest for trypsin method, suggesting that metabolic rate was the least influenced. Only the reduction rate of trypsin‐treated cells stayed unchanged after 4 h of stirring in suspension. These results suggest that, compared with scraping cells or using citrate buffer, the most suitable detachment method for V‐79 cells is detachment by trypsin and keeping cells in the stirred cell suspension until measurement. This method provides the highest cell viability, less visible damage on SEM micrographs and leaves the metabolic rate of cells unchanged.  相似文献   
9.
Hydrogen sulphide (H2S) is one of three gaseous signaling molecules after nitric oxide and carbon monoxide. Various H2S donor compounds have been synthesized to study its physiological function. Among these compounds sodium hydrosulphide (NaHS), a donor of releasing H2S rapidly have shown to be protective in certain neuronal cell line but several in vivo studies have generated conflicting data. Furthermore several slow releasing H2S donors have been shown to have positive effects on cells in culture. The intracellular concentration of H2S and hence its rate of production may be a factor in keeping the balance between its neuroprotective and toxic effects. The present study was undertaken to deduce how a rapid releasing H2S donor (NaHS) as opposed to a slow releasing donor (ADTOH), affect oxidative stress related intracellular components and survival of RGC-5 cells. It was concluded that when RGC-5 cells are exposed to the toxic effects of glutamate in combination with buthionine sulfoxime (Glu/BSO), ADTOH was more efficacious in inhibiting apoptosis, scavenging reactive oxygen species (ROS), stimulation of glutathione (GSH) and gluthathione-S-transferase (GST). Western blot and qPCR analysis showed ADTOH increased the levels of Nrf2, HO-1, PKCα, p-Akt, Bcl-2 and XIAP but caused a decrease of Nfκβ and xCT greater than NaHS. This study is first to compare the efficacy of two H2S donor drugs as potential neuroprotectants and demonstrate that slow regulated release of H2S to cell culture can be more beneficial in inhibiting oxidative stress induced cell death.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号