排序方式: 共有13条查询结果,搜索用时 11 毫秒
1.
Reinnervation of experimental superficial wounds in rats 总被引:1,自引:0,他引:1
Sensory reinnervation of a superficial skin wound in the rat was studied by labeling sensory axons with anterogradely transported wheat germ agglutinin-horseradish peroxidase. Reinnervation starts after 3 days from the edge of the wound as well as from beneath the wound. About 2 weeks after the production of the wound, some hyperinnervation appears to be present, but after a few additional weeks, the innervation pattern is essentially normal. The results indicate that structural recovery of sensory axons is rapid and probably complete when skin wounds heal with no or minimal scar formation. 相似文献
2.
Following dorsal root crush, the lesioned axons regenerate in the peripheral compartment of the dorsal root, but stop at the boundary between the peripheral and the central nervous system, the dorsal root transitional zone. We have previously shown that fibres from human fetal dorsal root ganglia grafted to adult rat hosts are able to grow into the spinal cord, but were not able to specify the route taken by the ingrowing fibres. In this study we have challenged the dorsal root transitional zone astrocyte boundary with human dorsal root ganglion transplants from 5–8-week-old embryos. By tracing immunolabelled human fibres in serial sections, we found that fibres consistently grow around the dorsal root transitional zone astrocytes in laminin-rich peripheral surroundings, and extend into the host rat spinal cord along blood vessels, either into deep or superficial laminae of the dorsal horn, or into the dorsal funiculus. Human fibres that did not have access to blood vessels grew on the spinal cord surface. These findings indicate, that in spite of a substantial growth capacity by axons from human embryonic dorsal root ganglion cells as well as their tolerance to non-permissive factors in the mature mammalian CNS, these axons are still sensitive to the repellent effects of astrocytes of the mature dorsal root transitional zone. Furthermore, this axonal ingrowth is consistently associated with laminin-expressing structures until the axons reach the host spinal cord. 相似文献
3.
Summary The ultrastructural localization of immunoreactivity for immunoglobulin G (IgG), F(ab′)2 and complement C9 was examined with preembedding immunoelectron microscopy in the hypoglossal nucleus and gracile nucleus as well as in the L4 spinal cord dorsal horn 1 week following hypoglossal or sciatic nerve transection, respectively. Only a few scattered immunoreactive profiles were observed on the unoperated side. On the operated side, IgG and F(ab′)2 immunoreactivity was present in the membranes of all reactive microglial cells observed. In addition, the cell membrane of some hypoglossal motoneurons showed IgG immunoreactivity. Complement C9 immunoreactivity was present in the cytoplasm of all reactive microglial cells examined. In addition, there was diffuse C9 immunoreactivity in motoneuron perikarya ipsilateral to nerve injury as well as in cell membranes in the neuropil, some of which could be identified as neuronal. Our interpretation of these findings is (1) that peripheral nerve injury results in binding of IgG to reactive microglia, as well as to some axotomized neurons, and (2) that C9 is synthesized by reactive microglia in response to axon injury and is also associated with axotomized motoneurons. These findings suggest that IgG and complement C9 are involved in microglia-neuron interactions after peripheral nerve injury. 相似文献
4.
Projections and peptide neurotransmitter/neuromodulator content of autonomic and visceral afferent neurons of the guinea pig were studied after application of the subunit B of cholera toxin (CTB) with or without horseradish peroxidase (HRP) as retrograde and anterograde tracers and subsequent immunohistochemical processing for double staining using antibodies raised to CTB, HRP and various neuropeptides. The results demonstrate that substance P (SP)- and calcitonin gene-related peptide (CGRP)-containing dorsal root ganglion cells project to the pylorus as well as to the celiac superior mesenteric and stellate ganglia as demonstrated with both retrograde and anterograde transport methodology. Binding studies revealed that a small number of the CTB-binding dorsal root ganglion cells contains immunoreactivity to SP and CGRP. The majority of the CTB-binding cells is SP- and CGRP-negative and terminate in the deeper parts of the dorsal horn. After injection of CTB conjugated to HRP (B-HRP) into the nodose ganglion, both motor and sensory elements were labeled in the medulla oblongata. Some of the CTB labeled vagal sensory nerve fibers in the nucleus tractus solitarii (NTS) were also found to contain immunoreactivity to SP or CGRP. The tracer was also transported through the peripheral branch of the nodose ganglion cells and labeled terminals in the esophagus. 相似文献
5.
Hanssons' enzyme histochemical method for the demonstration of carbonic anhydrase has been used to examine primary sensory neurons of cranial nerves in the rat (cochlear ganglion cells excluded). Numerous carbonic anhydrase positive neurons were present in the trigeminal and geniculate ganglia as well as in the mesencephalic trigeminal nucleus. A few carbonic anhydrase positive ganglion cells were found in the nodose ganglion, but none in the petrosal and vestibular ganglia. However, in the latter ganglia, satellite cells surrounding the neurons frequently showed staining for carbonic anhydrase. 相似文献
6.
Summary Hansson's enzyme histochemical method for the demonstration of carbonic anhydrase has been used to examine primary sensory neurons of cranial nerves in the rat (cochlear ganglion cells excluded). Numerous carbonic anhydrase positive neurons were present in the trigeminal and geniculate ganglia as well as in the mecencephalic trigeminal nucleus. A few carbonic anhydrase positive ganglion cells were found in the nodose ganglion, but none in the petrosal and vestibular ganglia. However, in the latter ganglia, satellite cells surrounding the neurons frequently showed staining for carbonic anhydrase. 相似文献
7.
Immature motoneurons are highly susceptible to degeneration following axon injury. The response of perineuronal glia to axon injury may significantly influence neuronal survival and axon regeneration. We have examined the central reactions to neonatal facial nerve transection with emphasis on the expression of complement component C3 (C3) and the multifunctional apolipoprotein J (ApoJ). Axotomy was performed on one-day-old rats. Animals were perfused from eight hours to two weeks after the lesion. The astroglial marker, glial fibrillary acidic protein (GFAP) was increased from one day and the microglial marker OX-42 from two days after injury. ApoJ immunoreactivity was increased in axotomized neuronal perikarya and astroglial cells from one day postaxotomy, but no C3 immunoreactive profiles were found at any postoperative survival time. Cell proliferation as judged by bromodeoxyuridine labeling and immunoreactivity for the cyclin Ki-67 antigen (antibody MIB5) occurred only at two days after injury. Double immunostaining revealed that the vast majority of proliferating cells were microglia, although occasional cells double labeled astrocytes were found as well. Our results indicate that the non-neuronal response in neonatal animals differ from that of adult ones as follows: 1) microglia transform rapidly into phagocytes in parallel with the degeneration of axotomized neurons, 2) despite the presence of neuronal degeneration, no expression of C3 was found, and the upregulation of the expression of the complement C3 receptor (CR3) is delayed, 3) ApoJ is strongly upregulated in perineuronal astrocytes as well as in the axotomized motoneurons. The marked upregulation of ApoJ in both instances suggests a general role of this protein in the neuronal response to axotomy. 相似文献
8.
9.
Summary In the present study we describe the application of the non-specific cholinesterase (nChE) histochemical method for the detection of encapsulated sensory nerve endings prior to immunofluorescence staining of the sensory nerve fibres. The nChE staining of Schwann-derived structures surrounding sensory terminals allowed us to identify unequivocally the sensory corpuscles in the skin and the muscle proprioceptors (muscle spindles and Golgi tendon organs) in longitudinal sections of muscle tissue. The nChE staining of sensory nerve endings and immunofluorescence-labelled nerve fibres and their terminals could be viewed and photographed in the same section using appropriate filters. Since nChE activity persists in terminal Schwann cells for a long time after loss of the sensory axons, this combined enzyme- and immunohistochemical approach is also useful for experimental studies involving denervation and re-innervation of sensory nerve endings. 相似文献
10.
Summary Projections and peptide neurotransmitter/neuromodulator content of autonomic and visceral afferent neurons of the guinea pig were studied after application of the subunit B of cholera toxin (CTB) with or without horseradish peroxidase (HRP) as retrograde and anterograde tracers and subsequent immunohistochemical processing for double staining using antibodies raised to CTB, HRP and various neuropeptides. The results demonstrate that substance P (SP)- and calcitonin gene-related peptide (CGRP)-containing dorsal root ganglion cells project to the pylorus as well as to the celiac superior mesenteric and stellate ganglia as demonstrated with both retrograde and anterograde transport methodology. Binding studies revealed that a small number of the CTB-binding dorsal root ganglion cells contains immunoreactivity to SP and CGRP. The majority of the CTB-binding cells is SP- and CGRP-negative and terminate in the deeper parts of the dorsal horn. After injection of CTB conjugated to HRP (B-HRP) into the nodose ganglion, both motor and sensory elements were labeled in the medulla oblongata. Some of the CTB labeled vagal sensory nerve fibers in the nucleus tractus solitarii (NTS) were also found to contain immunoreactivity to SP or CGRP. The tracer was also transported through the peripheral branch of the nodose ganglion cells and labeled terminals in the esophagus. 相似文献