首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   278篇
  免费   16篇
  294篇
  2022年   5篇
  2021年   8篇
  2020年   3篇
  2019年   4篇
  2018年   4篇
  2017年   4篇
  2016年   8篇
  2015年   11篇
  2014年   10篇
  2013年   12篇
  2012年   20篇
  2011年   19篇
  2010年   11篇
  2009年   10篇
  2008年   14篇
  2007年   12篇
  2006年   6篇
  2005年   10篇
  2004年   9篇
  2003年   9篇
  2002年   15篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1994年   3篇
  1993年   4篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1987年   4篇
  1986年   4篇
  1985年   2篇
  1984年   10篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   4篇
  1979年   1篇
  1978年   2篇
  1974年   5篇
  1973年   4篇
  1971年   1篇
  1970年   3篇
  1969年   2篇
  1968年   4篇
  1965年   1篇
  1964年   2篇
  1934年   1篇
  1932年   1篇
排序方式: 共有294条查询结果,搜索用时 15 毫秒
1.
A mutant strain of Penicillium citrinum grown in a chemically-defined production medium, yielded 145 mg compactin l–1. The medium also facilitated spectrophotometric analysis of compactin. Addition of KH2PO4in the production medium did not increase the compactin production, while addition of a surfactant, Tween 80, increased compactin to 175 mg l–1. Inoculation with 107 spores ml–1 and initial pH of 6.5–7 were the most suitable for compactin production.  相似文献   
2.
Epidermal growth factor (EGF) inhibited the growth of A431 human epidermoid carcinoma cells. The tumor promoting, phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA) also retarded A431 cell growth. Addition of both TPA and EGF inhibited cell growth in an additive or synergistic manner depending upon the initial plating density of the cultures. EGF increased the production of diacylglycerol (60-70%) and stimulated the synthesis of phosphatidylinositol (PI) from 3H-inositol (three- to fourfold increase). Both of these responses were attenuated in the presence of TPA. TPA alone stimulated the production of diacylglycerol (DG) but had little effect on PI synthesis. The biological effect of TPA appeared to be mediated by the presence of a high-affinity receptor for phorbol esters on A431 cells. Moreover, the binding of 125I-EGF to A431 cells was unaffected by TPA, suggesting that the antagonistic effects of TPA were occurring distal to the EGF receptor. These findings also indicated that although TPA and EGF both inhibited A431 cell growth, this effect could be dissociated from changes in PI synthesis but may be dependent upon transient changes in DG production.  相似文献   
3.
The production of cellulases in batch culture was studied using a mutant strain of Trichoderma reesei C-5 growing on lactose. Growth kinetic parameters on 2% lactose were studied and the comparative results for growth and enzyme productivities at two different lactose levels are discussed. The cellulase synthesis rate depended on the lactose concentration in the medium. Although growth was favoured at a higher lactose level, the volumetric enzyme productivity did not increase in proportion and the specific enzyme productivity decreased to a certain extent, indicating that partial catabolic inhibition at higher lactose concentrations may be possible. However, it was noted that the mutant strain was highly depressed and capable of synthesising active cellulases on lactose.  相似文献   
4.
A calcium and phospholipid-dependent protein kinase (protein kinase C) was detected in the crude soluble extracts of A431 human epidermoid carcinoma cells. The enzyme required calcium, phosphatidylserine or phosphatidylinositol, and diacylglycerol (DG) for maximal activation. Protein kinase C phosphorylated both endogenous cytosolic proteins and various histones. Addition of epidermal growth factor (EGF) to A431 cultures resulted in a 2 to 3-fold stimulation of protein kinase activity. 12-0-tetradecanoylphorbol-13-acetate (TPA) in concert with EGF attenuated the EGF-induced enhanced phosphorylation of endogenous proteins. It is conceivable that DG, derived from phosphatidylinositol turnover, acts as a natural activator of protein kinase C activity.  相似文献   
5.
Extractive lactic acid fermentation using ion-exchange resin   总被引:6,自引:0,他引:6  
Lactic acid fermentation is an end-product-inhibited reaction. The restriction imposed by lactic acid on its fermentation can be avoided by extractive fermentation techniques. Studies were performed by attaching an ion-exchange resin packed column with a 2-L fermentor for separation of lactic acid. The fermentation, in a conventional batch mode, resulted in a lactic acid yield of 0.828 g . g(-1) and a lactic acid productivity of 0.313 g . L(-1) . h(-1). However, these could be further enhanced to 0.929 g . g(-1) and 1.665 g . L(-1) . h(-1) by extractive fermentation techniques. The effect of temperature on extractive fermentation was remarkable and has been included in this work.  相似文献   
6.
Background Muscle recovery following peripheral nerve repair is sup-optimal. Follistatin (FST), a potent muscle stimulant, enhances muscle size and satellite cell counts following reinnervation when administered as recombinant FST DNA via viral vectors. Local administration of recombinant FST protein, if effective, would be more clinically translatable but has yet to be investigated following muscle reinnervation. Objective  The aim of this study is to assess the effect of direct delivery of recombinant FST protein on muscle recovery following muscle reinnervation. Materials and Methods  In total, 72 Sprague-Dawley rats underwent temporary (3 or 6 months) denervation or sham denervation. After reinnervation, rats received FST protein (isoform FS-288) or sham treatment via a subcutaneous osmotic pump delivery system. Outcome measures included muscle force, muscle histomorphology, and FST protein quantification. Results  Follistatin treatment resulted in smaller muscles after 3 months denervation ( p  = 0.019) and reduced force after 3 months sham denervation ( p  < 0.001). Conversely, after 6 months of denervation, FST treatment trended toward increased force output ( p  = 0.066). Follistatin increased satellite cell counts after denervation ( p  < 0.001) but reduced satellite cell counts after sham denervation ( p  = 0.037). Conclusion  Follistatin had mixed effects on muscle weight and force. Direct FST protein delivery enhanced satellite cell counts following reinnervation. The positive effect on the satellite cell population is intriguing and warrants further investigation.  相似文献   
7.

Background  

The development of multiphoton laser scanning microscopy has greatly facilitated the imaging of living tissues. However, the use of genetically encoded fluorescent proteins to distinguish different cell types in living animals has not been described at single cell resolution using multiphoton microscopy.  相似文献   
8.
The influence of temperature, illumination, hormonal levels (2,4-D and kinetin), carbon to nitrogen ratios, antibiotics, and precursor feeding on phenolics production by Nicotiana tabacum (tobacco) was studied. This plant cell system was chosen as a model system to learn more about secondary product formation in plant cell tissue cultures. This is the first study to manipulate all of these environmental parameters with a single plant cell system. The most striking results were with 2,4-D manipulation. The removal of 2,4-D resulted in significant phenolics production during the stationary phase, while normal levels strongly suppressed phenolics production during the stationary phase. The addition of phenylalanine stimulated phenolics production per gram of cells but strongly inhibited growth.  相似文献   
9.
Malaria parasites replicating inside red blood cells (RBCs) export a large subset of proteins into the erythrocyte cytoplasm to facilitate parasite growth and survival. PTEX, the parasite-encoded translocon, mediates protein transport across the parasitophorous vacuolar membrane (PVM) in Plasmodium falciparum-infected erythrocytes. Proteins exported into the erythrocyte cytoplasm have been localized to membranous structures, such as Maurer''s clefts, small vesicles, and a tubovesicular network. Comparable studies of protein trafficking in Plasmodium vivax-infected reticulocytes are limited. With Plasmodium yoelii-infected reticulocytes, we identified exported protein 2 (Exp2) in a proteomic screen of proteins putatively transported across the PVM. Immunofluorescence studies showed that P. yoelii Exp2 (PyExp2) was primarily localized to the PVM. Unexpectedly, PyExp2 was also associated with distinct, membrane-bound vesicles in the reticulocyte cytoplasm. This is in contrast to P. falciparum in mature RBCs, where P. falciparum Exp2 (PfExp2) is exclusively localized to the PVM. Two P. yoelii-exported proteins, PY04481 (encoded by a pyst-a gene) and PY06203 (PypAg-1), partially colocalized with these PyExp2-positive vesicles. Further analysis revealed that with P. yoelii, Plasmodium berghei, and P. falciparum, cytoplasmic Exp2-positive vesicles were primarily observed in CD71+ reticulocytes versus mature RBCs. In transgenic P. yoelii 17X parasites, the association of hemagglutinin-tagged PyExp2 with the PVM and cytoplasmic vesicles was retained, but the pyexp2 gene was refractory to deletion. These data suggest that the localization of Exp2 in mouse and human RBCs can be influenced by the host cell environment. Exp2 may function at multiple points in the pathway by which parasites traffic proteins into and through the reticulocyte cytoplasm.  相似文献   
10.
The rotary nanomotor ATP synthase is a central player in the bioenergetics of most organisms. Yet the role of ATP synthase in malaria parasites has remained unclear, as blood stages of Plasmodium falciparum appear to derive ATP largely through glycolysis. Also, genes for essential subunits of the F(O) sector of the complex could not be detected in the parasite genomes. Here, we have used molecular genetic and immunological tools to investigate the localization, complex formation, and functional significance of predicted ATP synthase subunits in P. falciparum. We generated transgenic P. falciparum lines expressing seven epitope-tagged canonical ATP synthase subunits, revealing localization of all but one of the subunits to the mitochondrion. Blue native gel electrophoresis of P. falciparum mitochondrial membranes suggested the molecular mass of the ATP synthase complex to be greater than 1 million daltons. This size is consistent with the complex being assembled as a dimer in a manner similar to the complexes observed in other eukaryotic organisms. This observation also suggests the presence of previously unknown subunits in addition to the canonical subunits in P. falciparum ATP synthase complex. Our attempts to disrupt genes encoding β and γ subunits were unsuccessful, suggesting an essential role played by the ATP synthase complex in blood stages of P. falciparum. These studies suggest that, despite some unconventional features and its minimal contribution to ATP synthesis, P. falciparum ATP synthase is localized to the parasite mitochondrion, assembled as a large dimeric complex, and is likely essential for parasite survival.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号