全文获取类型
收费全文 | 307篇 |
免费 | 33篇 |
国内免费 | 1篇 |
专业分类
341篇 |
出版年
2023年 | 6篇 |
2022年 | 16篇 |
2021年 | 24篇 |
2020年 | 8篇 |
2019年 | 7篇 |
2018年 | 11篇 |
2017年 | 6篇 |
2016年 | 28篇 |
2015年 | 15篇 |
2014年 | 26篇 |
2013年 | 22篇 |
2012年 | 21篇 |
2011年 | 19篇 |
2010年 | 12篇 |
2009年 | 10篇 |
2008年 | 15篇 |
2007年 | 11篇 |
2006年 | 13篇 |
2005年 | 13篇 |
2004年 | 17篇 |
2003年 | 9篇 |
2002年 | 7篇 |
2001年 | 3篇 |
2000年 | 5篇 |
1999年 | 5篇 |
1998年 | 2篇 |
1997年 | 2篇 |
1995年 | 1篇 |
1992年 | 3篇 |
1987年 | 1篇 |
1986年 | 1篇 |
1981年 | 1篇 |
1972年 | 1篇 |
排序方式: 共有341条查询结果,搜索用时 15 毫秒
1.
Mohammed S. Taghour Hazem Elkady Wagdy M. Eldehna Nehal M. El-Deeb Ahmed M. Kenawy Eslam B. Elkaeed Aisha A. Alsfouk Mohamed S. Alesawy Ahmed M. Metwaly Ibrahim. H. Eissa 《Journal of enzyme inhibition and medicinal chemistry》2022,37(1):1903
A thiazolidine-2,4-dione nucleus was molecularly hybridised with the effective antitumor moieties; 2-oxo-1,2-dihydroquinoline and 2-oxoindoline to obtain new hybrids with potential activity against VEGFR-2. The cytotoxic effects of the synthesised derivatives against Caco-2, HepG-2, and MDA-MB-231 cell lines were investigated. Compound 12a was found to be the most potent candidate against the investigated cell lines with IC50 values of 2, 10, and 40 µM, respectively. Furthermore, the synthesised derivatives were tested in vitro for their VEGFR-2 inhibitory activity showing strong inhibition. Moreover, an in vitro viability study against Vero non-cancerous cell line was investigated and the results reflected a high safety profile of all tested compounds. Compound 12a was further investigated for its apoptotic behaviour by assessing the gene expression of four genes (Bcl2, Bcl-xl, TGF, and Survivin). Molecular dynamic simulations authenticated the high affinity, accurate binding, and perfect dynamics of compound 12a against VEGFR-2. 相似文献
2.
Tadashi Yasuda Elena Tchetina Kunitaka Ohsawa Peter J Roughley William Wu Aisha Mousa Mirela Ionescu Isabelle Pidoux A Robin Poole 《Matrix biology》2006,25(7):419-429
The objective of this study was to determine whether a fragment(s) of type II collagen can induce cartilage degradation. Fragments generated by cyanogen bromide (CB) cleavage of purified bovine type II collagen were separated by HPLC. These fragments together with selected overlapping synthetic peptides were first analysed for their capacity to induce cleavage of type II collagen by collagenases in chondrocyte and explant cultures of healthy adult bovine articular cartilage. Collagen cleavage was measured by immunoassay and degradation of proteoglycan (mainly aggrecan) was determined by analysis of cleavage products of core protein by Western blotting. Gene expression of matrix metalloproteinases MMP-13 and MMP-1 was measured using Real-time PCR. Induction of denaturation of type II collagen in situ in cartilage matrix with exposure of the CB domain was identified with a polyclonal and monoclonal antibodies that only react with this domain in denatured but not native type II collagen. As well as the mixture of CB fragments and peptide CB12, a single synthetic peptide CB12-II (residues 195-218), but not synthetic peptide CB12-IV (residues 231-254), potently and consistently induced in explant cultures at 10 microM and 25 microM, in a time, cell and dose dependent manner, collagenase-induced cleavage of type II collagen accompanied by upregulation of MMP-13 expression but not MMP-1. In isolated chondrocyte cultures CB12-II induced very limited upregulation of MMP-13 as well as MMP-1 expression. Although this was accompanied by concomitant induction of cleavage of type II collagen by collagenases, this was not associated by aggrecan cleavage. Peptide CB12-IV, which had no effect on collagen cleavage, clearly induced aggrecanase specific cleavage of the core protein of this proteoglycan. Thus these events involving matrix molecule cleavage can importantly occur independently of each other, contrary to popular belief. Denaturation of type II collagen with exposure of the CB12-II domain was also shown to be much increased in osteoarthritic human cartilage compared to non-arthritic cartilage. These observations reveal that peptides of type II collagen, to which there is increased exposure in osteoarthritic cartilage, can when present in sufficient concentration induce cleavage of type II collagen (CB12-II) and aggrecan (CB12-IV) accompanied by increased expression of collagenases. Such increased concentrations of denatured collagen are present in adult and osteoarthritic cartilages and the exposure of chondrocytes to the sequences they encode, either in soluble or more likely insoluble form, may therefore play a role in the excessive resorption of matrix molecules that is seen in arthritis and development. 相似文献
3.
Mie Agermose Gram Hanne-Dorthe Emborg Astrid Blicher Schelde Nikolaj Ulrik Friis Katrine Finderup Nielsen Ida Rask Moustsen-Helms Rebecca Legarth Janni Uyen Hoa Lam Manon Chaine Aisha Zahoor Malik Morten Rasmussen Jannik Fonager Raphael Niklaus Sieber Marc Stegger Steen Ethelberg Palle Valentiner-Branth Christian Holm Hansen 《PLoS medicine》2022,19(9)
BackgroundThe continued occurrence of more contagious Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants and waning immunity over time require ongoing reevaluation of the vaccine effectiveness (VE). This study aimed to estimate the effectiveness in 2 age groups (12 to 59 and 60 years or above) of 2 or 3 vaccine doses (BNT162b2 mRNA or mRNA-1273) by time since vaccination against SARS-CoV-2 infection and Coronavirus Disease 2019 (COVID-19) hospitalization in an Alpha-, Delta-, or Omicron-dominated period.Methods and findingsA Danish nationwide cohort study design was used to estimate VE against SARS-CoV-2 infection and COVID-19 hospitalization with the Alpha, Delta, or Omicron variant. Information was obtained from nationwide registries and linked using a unique personal identification number. The study included all previously uninfected residents in Denmark aged 12 years or above (18 years or above for the analysis of 3 doses) in the Alpha (February 20 to June 15, 2021), Delta (July 4 to November 20, 2021), and Omicron (December 21, 2021 to January 31, 2022) dominated periods. VE estimates including 95% confidence intervals (CIs) were calculated (1-hazard ratio∙100) using Cox proportional hazard regression models with underlying calendar time and adjustments for age, sex, comorbidity, and geographical region. Vaccination status was included as a time-varying exposure. In the oldest age group, VE against infection after 2 doses was 90.7% (95% CI: 88.2; 92.7) for the Alpha variant, 82.3% (95% CI: 75.5; 87.2) for the Delta variant, and 39.9% (95% CI: 26.3; 50.9) for the Omicron variant 14 to 30 days since vaccination. The VE waned over time and was 73.2% (Alpha, 95% CI: 57.1; 83.3), 50.0% (Delta, 95% CI: 46.7; 53.0), and 4.4% (Omicron, 95% CI: −0.1; 8.7) >120 days since vaccination. Higher estimates were observed after the third dose with VE estimates against infection of 86.1% (Delta, 95% CI: 83.3; 88.4) and 57.7% (Omicron, 95% CI: 55.9; 59.5) 14 to 30 days since vaccination. Among both age groups, VE against COVID-19 hospitalization 14 to 30 days since vaccination with 2 or 3 doses was 98.1% or above for the Alpha and Delta variants. Among both age groups, VE against COVID-19 hospitalization 14 to 30 days since vaccination with 2 or 3 doses was 95.5% or above for the Omicron variant. The main limitation of this study is the nonrandomized study design including potential differences between the unvaccinated (reference group) and vaccinated individuals.ConclusionsTwo vaccine doses provided high protection against SARS-CoV-2 infection and COVID-19 hospitalization with the Alpha and Delta variants with protection, notably against infection, waning over time. Two vaccine doses provided only limited and short-lived protection against SARS-CoV-2 infection with Omicron. However, the protection against COVID-19 hospitalization following Omicron SARS-CoV-2 infection was higher. The third vaccine dose substantially increased the level and duration of protection against infection with the Omicron variant and provided a high level of sustained protection against COVID-19 hospitalization among the +60-year-olds.Mie Agermose Gram and colleagues estimate vaccine effectiveness against infection and COVID-19 hospitalization with the Alpha, Delta or Omicron variant in Denmark. 相似文献
4.
5.
Anushi E Rajapaksa Jenny J Ho Aisha Qi Rob Bischof Tri-Hung Nguyen Michelle Tate David Piedrafita Michelle P McIntosh Leslie Y Yeo Els Meeusen Ross L Coppel James R Friend 《Respiratory research》2014,15(1):60
Background
Pulmonary-delivered gene therapy promises to mitigate vaccine safety issues and reduce the need for needles and skilled personnel to use them. While plasmid DNA (pDNA) offers a rapid route to vaccine production without side effects or reliance on cold chain storage, its delivery to the lung has proved challenging. Conventional methods, including jet and ultrasonic nebulizers, fail to deliver large biomolecules like pDNA intact due to the shear and cavitational stresses present during nebulization.Methods
In vitro structural analysis followed by in vivo protein expression studies served in assessing the integrity of the pDNA subjected to surface acoustic wave (SAW) nebulisation. In vivo immunization trials were then carried out in rats using SAW nebulized pDNA (influenza A, human hemagglutinin H1N1) condensate delivered via intratracheal instillation. Finally, in vivo pulmonary vaccinations using pDNA for influenza was nebulized and delivered via a respirator to sheep.Results
The SAW nebulizer was effective at generating pDNA aerosols with sizes optimal for deep lung delivery. Successful gene expression was observed in mouse lung epithelial cells, when SAW-nebulized pDNA was delivered to male Swiss mice via intratracheal instillation. Effective systemic and mucosal antibody responses were found in rats via post-nebulized, condensed fluid instillation. Significantly, we demonstrated the suitability of the SAW nebulizer to administer unprotected pDNA encoding an influenza A virus surface glycoprotein to respirated sheep via aerosolized inhalation.Conclusion
Given the difficulty of inducing functional antibody responses for DNA vaccination in large animals, we report here the first instance of successful aerosolized inhalation delivery of a pDNA vaccine in a large animal model relevant to human lung development, structure, physiology, and disease, using a novel, low-power (<1 W) surface acoustic wave (SAW) hand-held nebulizer to produce droplets of pDNA with a size range suitable for delivery to the lower respiratory airways. 相似文献6.
Inflammation is a known mechanism that facilitates HIV acquisition and the spread of infection. In this study, we evaluated whether curcumin, a potent and safe anti-inflammatory compound, could be used to abrogate inflammatory processes that facilitate HIV-1 acquisition in the female genital tract (FGT) and contribute to HIV amplification. Primary, human genital epithelial cells (GECs) were pretreated with curcumin and exposed to HIV-1 or HIV glycoprotein 120 (gp120), both of which have been shown to disrupt epithelial tight junction proteins, including ZO-1 and occludin. Pre-treatment with curcumin prevented disruption of the mucosal barrier by maintaining ZO-1 and occludin expression and maintained trans-epithelial electric resistance across the genital epithelium. Curcumin pre-treatment also abrogated the gp120-mediated upregulation of the proinflammatory cytokines tumor necrosis factor-α and interleukin (IL)-6, which mediate barrier disruption, as well as the chemokines IL-8, RANTES and interferon gamma-induced protein-10 (IP-10), which are capable of recruiting HIV target cells to the FGT. GECs treated with curcumin and exposed to the sexually transmitted co-infecting microbes HSV-1, HSV-2 and Neisseria gonorrhoeae were unable to elicit innate inflammatory responses that indirectly induced activation of the HIV promoter and curcumin blocked Toll-like receptor (TLR)-mediated induction of HIV replication in chronically infected T-cells. Finally, curcumin treatment resulted in significantly decreased HIV-1 and HSV-2 replication in chronically infected T-cells and primary GECs, respectively. All together, our results suggest that the use of anti-inflammatory compounds such as curcumin may offer a viable alternative for the prevention and/or control of HIV replication in the FGT. 相似文献
7.
Jennifer D. Watts Mary Farina John S. Kimball Luke D. Schiferl Zhihua Liu Kyle A. Arndt Donatella Zona Ashley Ballantyne Eugénie S. Euskirchen Frans-Jan W. Parmentier Manuel Helbig Oliver Sonnentag Torbern Tagesson Janne Rinne Hiroki Ikawa Masahito Ueyama Hideki Kobayashi Torsten Sachs Daniel F. Nadeau John Kochendorfer Marcin Jackowicz-Korczynski Anna Virkkala Mika Aurela Roisin Commane Brendan Byrne Leah Birch Matthew S. Johnson Nima Madani Brendan Rogers Jinyang Du Arthur Endsley Kathleen Savage Ben Poulter Zhen Zhang Lori M. Bruhwiler Charles E. Miller Scott Goetz Walter C. Oechel 《Global Change Biology》2023,29(7):1870-1889
Arctic-boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic-boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003–2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco), net ecosystem CO2 exchange (NEE; Reco − GPP), and terrestrial methane (CH4) emissions for the Arctic-boreal zone using a satellite data-driven process-model for northern ecosystems (TCFM-Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM-Arctic to obtain daily 1-km2 flux estimates and annual carbon budgets for the pan-Arctic-boreal region. Across the domain, the model indicated an overall average NEE sink of −850 Tg CO2-C year−1. Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4 emissions from tundra and boreal wetlands (not accounting for aquatic CH4) were estimated at 35 Tg CH4-C year−1. Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high-latitude carbon status and also indicates a continued need for integrated site-to-regional assessments to monitor the vulnerability of these ecosystems to climate change. 相似文献
8.
Zhihua Liu John S. Kimball Nicholas C. Parazoo Ashley P. Ballantyne Wen J. Wang Nima Madani Caleb G. Pan Jennifer D. Watts Rolf H. Reichle Oliver Sonnentag Philip Marsh Miriam Hurkuck Manuel Helbig William L. Quinton Donatella Zona Masahito Ueyama Hideki Kobayashi Eugnie S. Euskirchen 《Global Change Biology》2020,26(2):682-696
Arctic and boreal ecosystems play an important role in the global carbon (C) budget, and whether they act as a future net C sink or source depends on climate and environmental change. Here, we used complementary in situ measurements, model simulations, and satellite observations to investigate the net carbon dioxide (CO2) seasonal cycle and its climatic and environmental controls across Alaska and northwestern Canada during the anomalously warm winter to spring conditions of 2015 and 2016 (relative to 2010–2014). In the warm spring, we found that photosynthesis was enhanced more than respiration, leading to greater CO2 uptake. However, photosynthetic enhancement from spring warming was partially offset by greater ecosystem respiration during the preceding anomalously warm winter, resulting in nearly neutral effects on the annual net CO2 balance. Eddy covariance CO2 flux measurements showed that air temperature has a primary influence on net CO2 exchange in winter and spring, while soil moisture has a primary control on net CO2 exchange in the fall. The net CO2 exchange was generally more moisture limited in the boreal region than in the Arctic tundra. Our analysis indicates complex seasonal interactions of underlying C cycle processes in response to changing climate and hydrology that may not manifest in changes in net annual CO2 exchange. Therefore, a better understanding of the seasonal response of C cycle processes may provide important insights for predicting future carbon–climate feedbacks and their consequences on atmospheric CO2 dynamics in the northern high latitudes. 相似文献
9.
Strayer M Savani RC Gonzales LW Zaman A Cui Z Veszelovszky E Wood E Ho YS Ballard PL 《American journal of physiology. Lung cellular and molecular physiology》2002,282(3):L394-L404
Surfactant protein B (SP-B) is a developmentally and hormonally regulated lung protein that is required for normal surfactant function. We generated transgenic mice carrying the human SP-B promoter (-1,039/+431 bp) linked to chloramphenicol acetyltransferase (CAT). CAT activity was high in lung and immunoreactive protein localized to alveolar type II and bronchiolar epithelial cells. In addition, thyroid, trachea, and intestine demonstrated CAT activity, and each of these tissues also expressed low levels of SP-B mRNA. Developmental expression of CAT activity and SP-B mRNA in fetal lung were similar and both increased during explant culture. SP-B mRNA but not CAT activity decreased during culture of adult lung, and both were reduced by transforming growth factor (TGF)-beta(1). Treatment of adult mice with intratracheal bleomycin caused similar time-dependent decreases in lung SP-B mRNA and CAT activity. These findings indicate that the human SP-B promoter fragment directs tissue- and lung cell-specific transgene expression and contains cis-acting elements involved in regulated expression during development, fetal lung explant culture, and responsiveness to TGF-beta and bleomycin-induced lung injury. 相似文献
10.
Labarthe MC Halanek N Birchall L Russell N Desel C Todryk S Peters MJ Lucas A Falkenberg FW Dalgleish AG Whelan M Ward SJ 《Cancer immunology, immunotherapy : CII》2006,55(3):277-288
Allogeneic whole tumour cell vaccines are inherently practical compared with autologous vaccines. Cell lines are derived from
allogeneic tumour, grown in bulk and then administered as a vaccine to the patient, following irradiation, which not only
prevents any replication but also enhances antigen presentation. Protection is believed to occur through the presentation
of antigens shared between the syngeneic and allogeneic tumours. Although cytokine-transfected tumour whole cell vaccines
have been used clinically, little data is available comparing the effects of immunomodulatory cytokine-transfection directly
on the same cells when used as both an allogeneic and autologous vaccine. To address this, weakly immunogenic B16-F10 (H-2b) murine melanoma was transfected to secrete either GM-CSF, IL-4 or IL-7. Prophylactic vaccination of both syngeneic C57/BL6
(H-2b) (B6) and allogeneic C3H/Hej (H-2k) (C3H) mice showed the effects of transfected cytokine varied between models. Both GM-CSF and IL-7 significantly (P<0.05) increased the levels of protection within syngeneic B6 mice, but had a diminished effect (P>0.05) within C3H allogeneic mice. Allogeneic B16-F10 cells and syngeneic K1735 cells generated CTL against K1735 suggesting
cross-reactive immunity. Using cells labeled with fluorescent dye we demonstrate that irradiated vaccines, of either syngeneic
or allogeneic origin, appear to generate potent immune responses and fragments of either vaccine remain at the injection site
for up to 9 days. This study shows that protection can be enhanced in vivo by using transfected cytokine, but suggests that
irradiated whole cell vaccines, of either tissue-type, are rapidly processed. This leads to the conclusion that the cytokine
effects are transient and thus transfection with cytokine may be of limited long-term use in situ. 相似文献