首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2799篇
  免费   257篇
  国内免费   6篇
  2023年   16篇
  2022年   40篇
  2021年   112篇
  2020年   42篇
  2019年   63篇
  2018年   74篇
  2017年   70篇
  2016年   77篇
  2015年   137篇
  2014年   133篇
  2013年   151篇
  2012年   238篇
  2011年   271篇
  2010年   183篇
  2009年   121篇
  2008年   163篇
  2007年   156篇
  2006年   138篇
  2005年   105篇
  2004年   92篇
  2003年   97篇
  2002年   80篇
  2001年   25篇
  2000年   33篇
  1999年   33篇
  1998年   16篇
  1997年   13篇
  1996年   12篇
  1995年   14篇
  1994年   7篇
  1993年   9篇
  1992年   18篇
  1991年   24篇
  1990年   19篇
  1989年   16篇
  1988年   26篇
  1987年   31篇
  1986年   21篇
  1985年   26篇
  1984年   13篇
  1983年   11篇
  1982年   9篇
  1981年   9篇
  1980年   11篇
  1979年   8篇
  1978年   9篇
  1977年   12篇
  1976年   10篇
  1973年   7篇
  1971年   9篇
排序方式: 共有3062条查询结果,搜索用时 46 毫秒
1.
A key intermediate in translocation is an ‘unlocked state’ of the pre‐translocation ribosome in which the P‐site tRNA adopts the P/E hybrid state, the L1 stalk domain closes and ribosomal subunits adopt a ratcheted configuration. Here, through two‐ and three‐colour smFRET imaging from multiple structural perspectives, EF‐G is shown to accelerate structural and kinetic pathways in the ribosome, leading to this transition. The EF‐G‐bound ribosome remains highly dynamic in nature, wherein, the unlocked state is transiently and reversibly formed. The P/E hybrid state is energetically favoured, but exchange with the classical P/P configuration persists; the L1 stalk adopts a fast dynamic mode characterized by rapid cycles of closure and opening. These data support a model in which P/E hybrid state formation, L1 stalk closure and subunit ratcheting are loosely coupled, independent processes that must converge to achieve the unlocked state. The highly dynamic nature of these motions, and their sensitivity to conformational and compositional changes in the ribosome, suggests that regulating the formation of this intermediate may present an effective avenue for translational control.  相似文献   
2.
3.
4.
The ability of epithelia to migrate and cover wounds is essential to maintaining their functions as physical barriers. Wounding induces many cues that may affect the transition to motility, including the immediate mechanical perturbation, release of material from broken cells, new interactions with adjacent extracellular matrix, and breakdown of physical separation of ligands from their receptors. Depending on the exact nature of wounds, some cues may be present only transiently or insignificantly. In many epithelia, activation of the epidermal growth factor receptor (EGFR) is a central event in induction of motility, and we find that its continuous activation is required for progression of healing of wounds in sheets of corneal epithelial cells. Here, we examine the hypothesis that edges, which are universally and continuously present in wounds, are a cue. Using a novel culture model we find that their presence is sufficient to cause activation of the EGFR and increased motility of cells in the absence of other cues. Edges that are bordered by agarose do not induce activation of the EGFR, indicating that activation is not due to loss of any specific type of cell–cell interaction but rather due to loss of physical constraints.  相似文献   
5.
A synthetic polyanion has been found to modulate the properties of the mitochondrial outer membrane channel, VDAC. This 10 kDa polyanion, first synthesized and described by Konig and co-workers, is a 1:2:3 copolymer of methacrylate, maleate, and styrene. It had been shown to interfere with the access of metabolites to the mitochondrial inner spaces. Here we show that, at nanomolar levels, the polyanion increases the voltage dependence of VDAC channels over 5-fold. Some channels seem to be totally blocked while others display the higher voltage dependence and are able to close at very low membrane potentials (5 mV). At 27 micrograms/ml polyanion, VDAC channels are closed while inserted into liposomes in the absence of any applied potential. The closed state of VDAC induced by the polyanion has similar properties to the closed state induced by elevated membrane potentials. The physical size of the polyanion-induced closed state (in VDAC-containing liposomes) is about 0.9 nm in radius. How this estimate fits with estimates of the channel's open state and estimated volume changes between the open and closed states, is discussed.  相似文献   
6.
We report Potential of Mean Force studies to describe the relative thermodynamic stabilities of d(GCCGCAGC) in a mismatched duplex and a hairpin monomer conformation in NaCl solution. The PMF calculations are combined with previous molecular mechanics and normal mode analysis in order to estimate the role of different components of the free energy in determining the relative stability of the duplex and hairpin structures. The high entropy associated with the loop region and the lack of minor groove phosphate-phosphate interactions in the hairpin compete against the gain in enthalpic contribution to the free energy due to base pairing in the mismatched duplex. The combined free energy calculations show that the hairpin is the most stable conformation at low salt and that a hairpin to duplex transition takes place at approximately 0.47 M NaCl. In addition, we studied the hairpin to partially stacked single helical conformation equilibrium at low salt. We found a small variation in transition temperature in salt concentration, delta Tm/delta log10(cs) approximately 2-3 degrees K/decade, in contrast to the duplex to hairpin or duplex to partially stacked single helix transition where the transition temperature exhibited marked dependence on salt concentration. This is in qualitative agreement with experimental data. Based on the Potential of Mean Force free energy calculation, the order of relative stability of the three-conformations studied varies with salt concentration. We observed the following orders of stability: stacked single helix greater than hairpin greater than duplex for cs less than 0.77 M NaCl; single helix greater than duplex greater than hairpin for 0.77 less than Cs less than 2.1 M; and duplex greater than hairpin greater than single strand for cs greater than 2.1 M. From the calculated PMF free energy curves in the NaCl concentration range, 0.012 less than cs less than 5.0 M, we can assign upper and lower bounds for the non-ionic differences in free energy between the duplex, hairpin, and stacked single helical states (at standard conditions: cs = 1.0 M, T = 25 degrees C, and 1 M oligomer concentration). We found that for delta G duplex single helix = G duplex - 2 x G single helix less than -7.38 Kcal/mol, the single helix is the least stable state. For the duplex-to-hairpin free energy difference in the range, -1.87 less than delta G duplex-hairpin less than 0.03 Kcal/mol, there will always be a salt-induced hairpin-to-duplex transition for 0.01 less than cs less than 1.6 M NaCl. If delta G duplex-hairpin less than -1.87, the duplex is always more stable than the hairpin; and for delta G duplex-hairpin greater than Kcal/mol, the hairpin state is always more stable than the duplex, for all salt concentrations.  相似文献   
7.
Organization of the Ly-5 gene.   总被引:8,自引:0,他引:8       下载免费PDF全文
  相似文献   
8.
Although adolescents account for only 0.4% of reported cases of the acquired immunodeficiency syndrome (AIDS) in the United States, they are sexually active and, therefore, at risk of acquiring human immunodeficiency virus (HIV) infection. To address issues of HIV control in adolescents, we developed guidelines that emphasize education and medical care and deemphasize antibody testing. For adolescents known to be infected with HIV, we recommend no restrictions on access to educational or treatment programs except when their health providers recommend such restrictions to protect them from exposure to opportunistic infections. For adolescents of unknown antibody status with a possible previous exposure to HIV, we recommend that as long as the incidence of HIV infection and clinical AIDS remains low, there should be no restrictions on residential placements and no routine antibody testing.  相似文献   
9.
The antihypertensive effect of alpha-methyldopa (MD) is believed to be critically dependent on its ability to deplete endogenous catecholamines or cause the synthesis of false neurotransmitters. We used liquid chromatography with electrochemical detection (LCEC) and negative chemical ionization gas chromatography-mass spectrometry (GC-MS) for quantitation of catecholamines and MD metabolites in rat. MD intraperitoneally (100 mg/kg q12 hr X 12 days), significantly increased alpha-methylnorepinephrine (MNE) in brain (1.02 +/- 0.33 micrograms/g), heart (1.67 +/- 0.57 micrograms/g) and adrenal glands (114.93 +/- 50.47 micrograms/g) Endogenous norepinephrine (NE), epinephrine (E) and dopamine (DA) were reduced. ME levels were 2.19 +/- 0.44 micrograms/g (n = 6) in the adrenal gland but only 99 +/- 26 pg/g (n = 3) in the brainstem. MD-induced endogenous brainstem NE depletion was more than compensated by MNE production, but brainstem E depletion was not compensated for by a stoichiometric production of brainstem ME. We conclude (1) although ME is a metabolite of MD, it is present in extremely low concentrations in brainstem and (2) central epinephrine-containing neurons are depleted of neurotransmitter by MD therapy. If this selective epinephrine depletion occurs in the bulbospinal tract neurons responsible for maintaining sympathetic tone, then this effect could contribute to the antihypertensive effect of MD.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号