排序方式: 共有11条查询结果,搜索用时 0 毫秒
1.
湿地生态系统土壤温度对气温的响应特征及对CO2排放的影响 总被引:10,自引:1,他引:10
通过2年的野外定位观测,研究了沼泽湿地土壤温度对气温变化的响应特征,以及土壤温度对沼泽湿地植物 土壤系统CO2排放的影响,并对CO2排放的季节性变化进行模拟计算.结果表明,随融冻作用开始,沼泽湿地土壤温度对气温变化的响应强度不断增大,根层土壤温度与气温间呈显著指数关系(R2=0.94,P<0.01),但不同深度土壤温度对气温变化的响应强度存在一定的差异,表现为随土壤深度的增加,二者之间的相关系数变小,土壤温度对气温的响应强度减弱.沼泽湿地植物 土壤系统CO2排放与根层土壤温度有关,二者呈显著指数相关关系(R2=0.84,P<0.01),利用模型模拟计算出沼泽湿地2003年生长季植物 土壤系统CO2排放通量平均值为664.5±213.9 mg·m-2·h-1,野外定位观测值为634.0±227.7 mg·m-2·h-1,二者之间差值不大,表明利用此方法可以对沼泽湿地生长季CO2排放进行估算. 相似文献
2.
若尔盖高原沼泽湿地与草地二氧化碳通量的比较 总被引:6,自引:0,他引:6
采用静止箱/气相色谱法,在2003—2005年的植物生长期对若尔盖高原沼泽湿地和草地的CO2通量进行了对比观测.结果表明:若尔盖高原沼泽湿地和草地CO2通量的平均值分别为203.22和323.03 mg·m-2·h-1,前者为后者的60%左右.沼泽湿地常年积水的环境条件限制了土壤中的植物残体、根系及有机物质的分解,是沼泽湿地CO2通量低于草地并形成泥炭积累的重要因素.研究区沼泽湿地与草地CO2通量的季节变化与气温变化呈正相关,峰值一般出现在7月和8月;其日变化也与气温呈正相关,峰值一般出现在11:00—17:00.5 cm深的土壤温度与CO2通量的相关性高于10和15 cm深的土壤温度. 相似文献
3.
外源氮对沼泽湿地CH4和N2O通量的影响 总被引:4,自引:0,他引:4
三江平原沼泽湿地受到大气沉降、地表径流、农业排水等外源氮素的输入,对湿地生态系统CH4和N2O通量有重要影响。采用野外原位施肥试验模拟外源氮输入,设0,60,120,240kgN·hm^-24种试验处理,探讨外源氮对沼泽湿地CH4和N2O通量的影响。结果表明,外源氮促进了CH4和N2O排放。与对照处理比较,各施氮水平CH4平均排放通量分别增加了181%,254%和155%,N2O排放通量分别增加了21%,100%和533%。外源氮输入对CH4排放的季节变化形式影响不大,而N2O的季节变化形式随着氮输入表现出波动变化的趋势。不同施氮水平对CH4排放的促进作用与植物生长阶段和产CH4的微生物过程密切相关,N2O排放通量随氮输入量呈指数增加(R^2=0.97,P〈0.01)。外源氮通过影响湿地微生物过程来进一步影响CH4和N2O的排放。 相似文献
4.
三江平原典型环型湿地土壤-植被-动物系统的结构及功能研究 总被引:19,自引:1,他引:19
环型湿地是三江平原沼泽湿地的主要景观类型之一。由于微地貌的变化 ,形成了相应的高势能区和低势能区。随着势能的变化 ,形成了不同的水热分布带 ,因而也产生了不同的土壤、植物、动物的环型水平结构和垂直结构的特点。在水平结构上 ,环型湿地由中心向外缘 ,地势由低到高 ,水分由多渐少 ,温度由低到高分布。因此 ,也带来了土壤和动植物的变化 ,土壤由泥炭土向沼泽土和白浆土过渡 ;植物由沉水的小狸藻向浮水的漂筏苔草、挺水的大穗苔草 睡菜群丛、毛果苔草 -狭叶甜茅群丛、小叶章 -沼柳 -越菊柳以及外缘分布的蒙古栎 白桦岛状林发展。动物的水平结构也就有相应的变化。环型湿地每个水平分布带又都具有各自不同的垂直结构。环型湿地的特殊结构 ,使其有着巨大的储水功能和调节温度的功能。即使在高温干旱的季节 ,由于湿地表面的须根层有隔离的空间 ,阻止了温度的传导 ,减少了下层水的蒸发 ,在下层的泥炭中仍有大量的水分保持。同时 ,这里也是一个太阳能储存库和遗传基因库。深入了解环型湿地的结构与功能 ,对研究湿地生态系统的功能及其保护湿地 ,实现湿地资源的可持续利用都具有重要的意义 相似文献
5.
三江平原春小麦农田生态系统氧化亚氮通量特征 总被引:4,自引:0,他引:4
利用静态暗箱-气相色谱法对三江平原春小麦农田生态系统N2O排放通量进行连续2.5年的田间原位观测.结果表明:三江平原春小麦农田生态系统N2O排放通量具有较明显的季节变化和年际变化,并主要与年际间降水及田间水分管理差异有关;春小麦农田生态系统N2O排放日变化与气温及地下5 cm温度变化有关.生长期N2O的排放较强,休耕期N2O排放量显著下降,冰冻期N2O的排放较微弱,融冻时N2O排放缓慢增强.生长期N2O平均排放通量为0.190 mg.m-2.h-1,收割后到冰冻期间为0.077 mg.m-2.h-1,冻融期间为0.017 mg.m-2.h-1. 相似文献
6.
若尔盖高原沼泽湿地N2O排放通量研究 总被引:6,自引:0,他引:6
应用静态箱/气相色谱法,测定了若尔盖高原沼泽N2O排放能量,测定期为该地植物生长期,即2004年4月末至10月初。结果表明,若尔盖高原沼泽湿地N2O排放通量平均值为0.010mg·m-2h-1,最大值为0.079mg·m-2h-1,最小值为-0.051mg·m-2h-1。高峰排放期为5月,最低排放期为地表水深最大的6月。沼泽湿地N2O排放通量季节变化与沼泽湿地水深呈负相关关系。沼泽湿地N2O排放通量日变化与大气温度呈正相关关系,排放高值出现在午后。若尔盖高原沼泽湿地在植物生长期的年排放总量约为0.159Gg·a-1。 相似文献
7.
外源氮对沼泽湿地CH4和N2O通量的影响 总被引:1,自引:0,他引:1
三江平原沼泽湿地受到大气沉降、地表径流、农业排水等外源氮素的输入,对湿地生态系统CH4和N2O通量有重要影响。采用野外原位施肥试验模拟外源氮输入,设0,60,120,240kgN•hm-2 4种试验处理,探讨外源氮对沼泽湿地CH4和N2O通量的影响。结果表明,外源氮促进了CH4和N2O排放。与对照处理比较,各施氮水平CH4平均排放通量分别增加了181%,254%和155%,N2O排放通量分别增加了21%,100%和533%。外源氮输入对CH4排放的季节变化形式影响不大,而N2O的季节变化形式随着氮输入表现出波动变化的趋势。不同施氮水平对CH4排放的促进作用与植物生长阶段和产CH4的微生物过程密切相关,N2O排放通量随氮输入量呈指数增加(R2=0.97,p<0.01)。外源氮通过影响湿地微生物过程来进一步影响CH4和N2O的排放。 相似文献
8.
应用静态箱/气相色谱法,测定了若尔盖高原沼泽N2O排放能量,测定期为该地植物生长期,即2004年4 月末至10月初。结果表明,若尔盖高原沼泽湿地N2O排放通量平均值为0.010 mg·m-2h-1,最大值为0.079 mg·m-2h-1, 最小值为-0.051mg·m-2h-1。高峰排放期为5月,最低排放期为地表水深最大的6月。沼泽湿地N2O排放通量季节变化与沼泽湿地水深呈负相关关系。沼泽湿地N2O排放通量日变化与大气温度呈正相关关系,排放高值出现在午后。若尔盖高原沼泽湿地在植物生长期的年排放总量约为0.159Gg·a-1。 相似文献
9.
植物对沼泽湿地生态系统CO2和CH4排放的影响 总被引:4,自引:0,他引:4
利用静态暗箱/气相色谱法于2003~2005年在生长季对三江平原小叶章(Calamagrostis angustifolia)沼泽化草甸和毛果苔草(Carexlasiocarpa)沼泽地区CO2和CH4的排放通量进行野外对比观测实验。结果表明:2003~2005年生长季小叶章草甸土壤-植物系统CO2排放通量分别是土壤CO2排放通量的1.65、2.06和2.01倍,毛果苔草沼泽土壤-植物系统CO2排放通量分别是土壤CO2排放通量的2.58、2.27和4.21倍,表明沼泽湿地土壤-植物系统CO2排放通量的主要贡献者是植物地上部分的呼吸作用,且3个生长季小叶章草甸CO2排放通量均显著大于毛果苔草沼泽,主要是由于植物生物量的差异以及土壤微生物活性的不同。2003~2005年植物生长季,小叶章草甸土壤-植物系统CH4排放通量分别是土壤的4.84、3.55和6.45倍,毛果苔草沼泽土壤-植物系统CH4排放通量分别是土壤的2.60、1.25和3.22倍,且3个生长季小叶章草甸和毛果苔草沼泽CH4排放通量均具有显著差异,这主要是由于水位的差异以及植物对CH4排放能力的不同造成的。 相似文献
10.
三江平原典型沼泽湿地氧化亚氮通量 总被引:14,自引:2,他引:14
2002~2004年利用静态箱-气相色谱法对三江平原3种具有代表性的湿地类型(常年积水的毛果苔草沼泽、季节性积水的小叶章湿草甸和常年土壤过湿的灌丛湿地)进行了为期两年半的N2O现场观测研究.结果表明,三江平原3种类型湿地N2O通量均有明显的季节变化和年际变化,一般在非冰冻期表现为排放,冰雪覆盖期表现为微弱的吸收.生长季的N2O通量以灌丛湿地N2O排放通量最大,毛果苔草沼泽最小.全年平均N2O交换通量: 毛果苔草沼泽为53.928 mg·m-2·yr-1,小叶章湿地为21.408 mg·m-2·yr-1,灌丛湿地为657.120 mg·m-2·yr-1,证明沼泽湿地是大气N2O的源.3种类型湿地生长季N2O通量无明显的日变化,与温度的相关性不大. 相似文献