首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高聚物基PCR微流控芯片技术   总被引:4,自引:0,他引:4  
PCR微流控芯片是一种完美的体外无限扩增核酸的技术 ,是第三代PCR技术。目前英国、德国、日本、中国等多家研究单位已经成功地应用自己研制的PCR微流控芯片在实验室完成了DNA扩增。基于目前大多芯片采用硅或者玻璃作为基片 ,存在加工工艺复杂和价格昂贵的缺点 ,通过对不同材料性能比较 ,认为价格便宜、加工方法简单的高聚物是今后芯片材料发展的趋势。通过对三种高聚物加工方法的比较 ,认为准分子激光直写入微加工方法因其灵活性大 ,加工质量高 ,将成为高聚物加工方法的主流。最后针对PCR微流控芯片的温控系统提出了优化方案。  相似文献   

2.
在光学性能良好的Brofloat玻璃电泳芯片上,利用自行搭建的共聚焦激光诱导荧光检测系统,通过对芯片管道表面修饰、筛分介质、分离电场强度、进样方式、电泳温度、进样时间等条件的优化,对含15个STR基因座的法医DNA样品进行电泳分离测试实验.通过对芯片电泳条件优化获得了本电泳系统的最佳条件,成功实现8 min内完成DNA样品片段的分离,表明该微流控芯片电泳系统在法医DNA快速分析方面具有良好的应用前景.  相似文献   

3.
为开发针对大规模样本、低通量位点的单核苷酸多态性(Single nucleotide polymorphism, SNP)分型技术,研究依据虹鳟高通量SNP芯片检测鲑科4个属不同物种群体样本的结果,筛选获得了96个高质量共享多态性位点,应用Fluidigm 96.96微流控动态芯片平台,构建了用于鲑科物种增殖放流个体识别的SNP分型系统。以细鳞鲑为例评估芯片分型结果可靠性,分型成功率为98.63%,与Affymetrix高通量芯片分型一致性达到97.92%。基于该芯片分型结果,使用CERVUS 3.0.7软件对96尾细鳞鲑子代样本及其候选亲本和干扰亲本进行亲权鉴定,结果能够准确重现复杂家系的真实系谱,在用于单亲本亲权鉴定时,第一亲本非排除率(Nonexclusion probability for first parent, NE-1P)为4.362×10–4,用于双亲本亲权鉴定时,双亲非排除率(Nonexclusion probability for parent pair, NE-PP)为6.538×10–12,完全满足增殖放流回捕个体分...  相似文献   

4.
干细胞以其多潜能性和自我更新能力成为人类早期胚胎研究、干细胞治疗和组织工程修复中的主要细胞来源和种子细胞。但传统细胞研究方法难以提供干细胞生长和分化所需的复杂多层次的微环境,使研究结果与体内真实情况相差甚远,尽可能模拟和精确调控干细胞培养微环境,进而控制干细胞自我更新或分化命运,成干细胞研究的难点。微流控芯片可以更真实地模拟干细胞小生境(niche);实时可控的对单个干细胞加载剪切力和生长因子;其透明的装置可对细胞行为进行跟踪观察等研究细胞微环境中占有优势,从而受到越来越多干细胞研究者的关注。结合对微流控技术研究经验,对干细胞微环境构建所需条件进行了综述,总结了微流控在干细胞研究中所取得的成果,并展望了微流控技术在干细胞研究中的应用前景。  相似文献   

5.
聚合物微流控芯片成本低、易加工,目前在医药、生物检测和化学合成等领域得到了普遍应用。以热塑性聚合物聚甲基丙烯酸甲酯(polymethylmethacrylate,PMMA)和热固型聚合物聚二甲基硅氧烷(polydimethy lsiloxane,PDMS)为基材的高分子聚合物材料因具有较好的生物相容性和光学透明性,已逐渐成为聚合物微流控芯片加工的主导材料,被广泛应用于生物医药类微流控芯片的制备。鉴于该类芯片应用场景的特殊性,需在使用前进行消毒灭菌处理以避免微生物干扰。目前,针对PMMA和PDMS的消毒灭菌方法包括高压蒸汽灭菌、紫外线灭菌、电子束、60Co γ射线辐射灭菌、超临界二氧化碳灭菌、乙醇消毒、环氧乙烷灭菌、过氧化氢低温等离子体灭菌、绿原酸消毒、清洗剂消毒。本文从基本原理、消毒灭菌方法、应用场景等方面,回顾和总结了相关技术在PMMA和PDMS基体微流控芯片中的实现方法,并在芯片材质、适用范围等方面分析了所适用的消毒灭菌方法,为以聚合物为基材的生物医药类微流控芯片的消毒灭菌提供有益参考。  相似文献   

6.
与昆虫学相关的研究是生命科学最早的研究领域之一,在害虫防治、资源昆虫利用和模式生物(例如黑腹果蝇Drosophila melanogaster)等研究领域有重要意义。微流控芯片(Microfluidic chip)也称作“芯片实验室”(Lab-on-a-chip),是21世纪一项重要的技术发明,目前被广泛应用于细胞生物学、发育生物学、体外诊断等领域。随着微流控芯片技术发展的不断深入,与昆虫研究相关的微流控芯片不断出现,促进了昆虫细胞、胚胎发育、昆虫行为和害虫防治等研究领域的发展。本文针对应用于昆虫学领域的微流控芯片研究进行综述。  相似文献   

7.
微流控芯片细胞捕获分离方法概述   总被引:1,自引:0,他引:1  
细胞捕获分离是免疫学、诊断检测、病理研究等学科经常用到的生物学实验方法.近年来,微流控芯片平台的细胞捕获分离方式花样繁多,层出不穷,它具有可快速检测、所需样本量少、节约试剂、成本低廉等优势.本文主要对近年来多种微流控细胞捕获分离的方法,以免疫捕获分离和无标签细胞分离两类对其进行介绍.免疫捕获分离是较为传统的细胞捕获分离方式,它的特异性好、捕获分离后的细胞纯度较高.无标签细胞分离是近几年热门发展的技术手段,它采用物理学与生物学相结合的方式,能较好地保持细胞的完整性和生物活性.细胞捕获分离在微流控平台的应用虽然发展迅速,但其在工业化生产和微型化整合等方面还存在一些问题,只有解决生产问题,细胞捕获分离在微流控平台的应用才真正具有实际价值,可以真正作为一种技术手段用于日常的实验操作和医学检测中.就目前而言,细胞捕获分离在微流控芯片中仍具有很大的发展前景.  相似文献   

8.
细胞是生物体和生命活动的基本单位,细胞分析对于细胞结构和功能的研究、生命活动规律和本质的探索、疾病的诊断与治疗、药物的筛选与设计等都具有十分重要的意义.自微流控芯片面世以来,以其微型化、集成化、自动化和便携化等优势越来越多地应用在细胞分析领域.现就微流控芯片在细胞操纵、细胞培养和细胞内组分分析三个方面上的应用进行综述.  相似文献   

9.
基于聚合酶链式反应(polymerase chain reaction,PCR)的核酸扩增技术是分子诊断领域的金标准,然而PCR往往包含多个反应温度,涉及长时间的循环升降温过程,且需要在复杂热循环仪中完成,这些都限制了其在现场即时检测(point-of-care testing,POCT)中的应用。与传统PCR相比,等温扩增依靠恒定反应温度,反应时间短,检测装置简单,能够提供更加方便、快捷的核酸检测。基于微流控技术的等温扩增检测,通过兼顾微流控与等温扩增两者的优势,能够为POCT分子诊断提供更具竞争力的平台。例如,在新型冠状病毒肺炎(COVID-19)疫情防控中,多种形式的POCT等温扩增检测展示了其独特优势。文中首先归纳总结了典型的等温扩增技术及其检测方法,然后对不同类型的等温扩增微流控系统进行了分类总结与分析(如功能定位、结构组成、流体控制、系统特点等),最后总结了等温扩增微流控系统在新冠病毒(SARS-CoV-2)等不同病原体检测领域中的应用,并对等温扩增与CRISPR基因编辑等其他新型技术的相互结合进行了介绍与展望。  相似文献   

10.
合成生物学的主要目标之一是自下而上地构建人工细胞。它不仅能深入理解生命的起源和细胞功能,还能在人工细胞底盘、组织模型、工程治疗递送系统和药物筛选工具等领域发挥关键作用。然而,这一目标的实现极具挑战,细胞结构的复杂性、基础模块的微型化和多样性对构建方法提出了极高要求。微流控芯片作为一种先进的分析系统,为人工细胞的构建提供了一种有效工具,能够更精确地控制其结构及局部微环境,成为当前研究的首选途径。本文综述了基于微流控芯片的人工细胞构建、操作与分析方法,强调了微环境对生命系统和人工自我维持体系的重要性,展示了人工细胞在多个关键生物医学领域的广泛应用。通过探讨不同微流控方法的优缺点及其在各种应用中的表现,帮助研究人员更深入地理解人工细胞相关研究。最后,对基于微流控技术的人工细胞研究的未来发展进行了展望,期待这一领域能够取得更大突破和进步。  相似文献   

11.
目的:利用微流控芯片技术构建易调控、接近在体微环境的体外血脑屏障模型。方法:微流控芯片体外模型采用上下双培养池结构,由多聚碳酸酯膜分隔,两套流路系统控制流体。细胞采用原代分离纯化的大鼠脑血管内皮细胞和星形胶质细胞,免疫荧光技术进行鉴定,分别按次序注入微流控芯片上下培养池,按1μl/min的流速进行灌注培养,构建体外血脑屏障模型,并对此模型进行鉴定和评价。结果:原代分离纯化得到两种细胞,免疫荧光法鉴定细胞纯度达95%以上。共培养3天紧密连接开始形成,5天达到峰值,超微结构观察显示内皮细胞之间形成紧密连接,且荧光素钠渗透实验和TEER值测量表明屏障形成良好。结论:成功构建微流控芯片体外血脑屏障模型,可成为一个新的平台应用于药物筛选、神经系统基础等多项研究中。  相似文献   

12.
乳腺癌骨转移患者死亡率高达70%~80%,目前缺乏有效的治疗药物.微流控芯片技术能够有效模拟骨组织的生化和生物物理微环境,便捷地实现模拟骨微环境中乳腺癌骨转移的研究,这将为探索乳腺癌骨转移的细胞和分子机制、进而进行抗乳腺癌骨转移药物高通量筛选提供有价值的技术方法和平台.本综述简要介绍了乳腺癌骨转移的分子机制和治疗药物研究现状,详细阐述了乳腺癌骨转移的微流控芯片模型,分析了基于微流控芯片技术进行抗乳腺癌骨转移药物高通量筛选的优势和挑战,旨在为乳腺癌骨转移机制研究和药物筛选提供参考.  相似文献   

13.
用于药物筛选的微流控细胞阵列芯片   总被引:1,自引:0,他引:1       下载免费PDF全文
细胞区域分布培养以及如何有效地对微流体进行操控是微流控阵列芯片在细胞药物研究中的关键技术。本研究介绍了一种利用SU-8负性光刻胶模具和PDMS制作双层结构的微流控细胞阵列芯片的方法,该芯片通过C型的坝结构将进样细胞拦截在芯片的细胞培养的固定区域,键合双层PDMS构成阀控制层,阀网络的开关作用成功实现了芯片通道内微流体的操控,同时芯片设计了药物浓度梯度网络,产生6个不同浓度的药物刺激细胞。通过对芯片3种共培养细胞活性的检测和药物伊立替康(CTP-11)对肝癌细胞的浓度梯度刺激等实验结果验证该芯片在细胞研究和药物筛选等方面的可行性。  相似文献   

14.
利用四个LED分别匹配相应的激发滤光片,带通发射滤光片和PMT,自行搭建微芯片多波长荧光检测系统。用于复杂生物混合样品:四类试样(荧光胺标记的牛磺酸(FT Ex/Em 390/446nm)、荧光素(Fl Ex/Em 480/520nm)、5(6)-羧基-X-罗丹明(ROX Ex/Em 563/600nm)和花菁染料(Cy 5 Ex/Em 635/677nm)的同时分离和测定并得到充分的验证。  相似文献   

15.
低温保存对卵母细胞造成渗透损伤、毒性损伤和冰晶损伤,使得细胞冻后质量难以提高.本文首次提出将微流控法添加-去除保护剂分别与三种冷冻载体(OPS、QC及Cryotop)搭配使用,对猪卵母细胞进行冷冻保存,并与传统冷冻法进行比较;然后,首次选用透明陶瓷和玻璃制作集成一体化芯片,对猪卵母细胞进行冷冻保存,以冷冻保存后的细胞存活率和发育率为判断依据,筛选出较好的方案;最后,对冻后卵母细胞的早期凋亡情况、胞内活性氧水平和线粒体膜电位水平进行分析.结果表明,微流控添加-去除保护剂组卵母细胞冻后存活率以及卵裂率都显著高于传统冷冻组,可以有效降低卵母细胞的早期凋亡率和胞内活性氧水平,减小线粒体损伤,提高细胞的冻后质量.透明陶瓷一体化芯片保存卵母细胞得到的存活率和卵裂率与传统OPS冷冻的保存结果无显著差异.微流控芯片技术为卵母细胞的低温保存提供新的思路,有较好的应用前景.  相似文献   

16.
王虎  魏俊峰  郑国侠   《生态学杂志》2014,25(4):1231-1238
近年来,一种新型技术——微流控芯片技术因其分析速度快、消耗低、体积小、操作简单等特点而备受世界各国的广泛重视.该技术以微通道网络为基本特征,以微机电系统(MEMS)工艺为技术依托,将整个实验室的功能集成在微小芯片上,即构成所谓“芯片实验室”.本文从该技术的基本情况出发,介绍了微流控芯片的发展,并从仪器小型化、系统集成化、不同的芯片材料以及多种检测技术等方面,着重讨论了其在水环境污染分析方面的实际应用和发展前景,指出了它当前所面临的一些问题.随着微流控芯片的不断发展,高速多通道检测装置、低成本设备以及集成了多种方法的高通用性微流控检测芯片,都将成为未来研究的热点.  相似文献   

17.
微流控芯片技术是一种全新的微量分析技术。介绍了微流控芯片技术的基本原理、特点及分类,并深入讨论了该技术在食品安全、营养、加工和风味等食品领域中的应用,包括有害化学物质、食品添加剂、转基因食品和食源性致病微生物等的检测,营养物质和功能成分的分析鉴定,食品工艺参数的调控以及食品风味成分的检测,展望了微流控芯片技术在食品领域的广阔应用前景。  相似文献   

18.
微流控分析芯片在医学领域的应用   总被引:5,自引:0,他引:5       下载免费PDF全文
微全分析系统(μ_TAS)又称为芯片实验室,自从Manz等于20世纪90年代首次提出这一概念以来,经过十余年的发展μ_TAS已成为生物分析的一个独立领域并被学术界所认可。微流控分析芯片作为μ_TAS发展的主要方向以其快速、高效分析,低消耗和微型化等特点发展非常迅速。在此结合微流控分析芯片在医学领域的应用状况,着重从基因检测、蛋白质分析和细胞分析等方面,对该技术在医学领域里的应用及其未来发展趋势作一综述。  相似文献   

19.
核酸等温扩增技术是一种在恒温体系内对核酸进行高效扩增的分子扩增技术,它能够在短时间内实现目的基因的指数增长.微流控芯片(microfluidic chip)技术是把研究样品制备、核酸富集、纯化和检测等多个操作步骤集成到一块“微型化”的芯片上,经自动化处理,得出实验结果,即“样品进,结果出”.将核酸等温扩增技术与微流控芯...  相似文献   

20.
近年来,随着微流体技术和生物微电子机械系统技术的不断发展,人类中枢神经系统(CNS)的微流体平台及相关疾病的体外模型逐渐得到了广泛的研究。微流体平台可以更好地模拟体内环境,同时能够控制结构、微环境和外来刺激。文中总结了微流控芯片在CNS的基本技术和CNS疾病中的应用。此外,文中对微流控芯片在CNS中的研究进行了展望,强调了通过跨学科的共同努力能够实现更高程度的仿生学挑战。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号