首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biosynthesis of galactofuranosyl residues in galactocarolose   总被引:6,自引:2,他引:4  
1. Cell-free extracts of Penicillium charlesii G. Smith were used in a study of the biosynthesis of the galactofuranose polymer, galactocarolose. 2. UDP-glucose and UDP-galactopyranose were precursors of galactocarolose and it was shown that the galactofuranose residues in the polymer were formed from glucose without fission of the hexose carbon chain. 3. A new nucleotide, UDP-alpha-d-galactofuranose, was formed by the system and was a major product when polymer synthesis was inhibited by F(-) or Zn(2+); the nucleotide was isolated and its structure determined. 4. UDP-alpha-d-galactofuranose was efficiently utilized for polymer synthesis and shown to be formed from the pyranose nucleotides. 5. A route for the biosynthesis of galactocarolose, involving a novel ring contraction of the hexose residue while still attached to the nucleotide, is proposed.  相似文献   

2.
D-Galactan I is an O-antigenic polymer with the repeat unit structure [-->3)-beta-D-Galf-(1-->3)-alpha-D-Galp-(1-->], that is found in the lipopolysaccharide of Klebsiella pneumoniae O1 and other gram-negative bacteria. A genetic locus containing six genes is responsible for the synthesis and assembly of D-galactan I via an ATP-binding cassette (ABC) transporter-dependent pathway. The galactosyltransferase activities that are required for the processive polymerization of D-galactan I were identified by using in vitro reactions. The activities were determined with endogenous lipid acceptors in membrane preparations from Escherichia coli K-12 expressing individual enzymes (or combinations of enzymes) or in membranes reconstituted with specific lipid acceptors. The D-galactan I polymer is built on a lipid acceptor, undecaprenyl pyrophosphoryl-GlcpNAc, a product of the WecA enzyme that participates in the biosynthesis of enterobacterial common antigen and O-antigenic polysaccharide (O-PS) biosynthesis pathways. This intermediate is directed into D-galactan I biosynthesis by the bifunctional wbbO gene product, which sequentially adds one Galp and one Galf residue from the corresponding UDP-sugars to form a lipid-linked trisaccharide. The two galactosyltransferase activities of WbbO are separable by limiting the UDP-Galf precursor. Galactosyltransferase activity in membranes reconstituted with exogenous lipid-linked trisaccharide acceptor and the known structure of D-galactan I indicate that WbbM catalyzes the subsequent transfer of a single Galp residue to form a lipid-linked tetrasaccharide. Chain extension of the D-galactan I polymer requires WbbM for Galp transferase, together with Galf transferase activity provided by WbbO. Comparison of the biosynthetic pathways for D-galactan I and the polymannose E. coli O9a antigen reveals some interesting features that may reflect a common theme in ABC transporter-dependent O-PS assembly systems.  相似文献   

3.
1. The enzymic synthesis of the wall polymer poly-(N-acetylglucosamine 1-phosphate) in Staphylococcus lactis N.C.T.C. 2102 was studied by using UDP-[acetyl-(14)C]N-acetylglucosamine and the corresponding nucleotide containing (32)P. 2. Labelled material was extracted from the particulate enzyme preparation with butan-1-ol. Pulse-labelling experiments indicated that this material contained an intermediate in the biosynthesis. 3. The lipid intermediate was partially purified, and chemical and enzymic degradation showed that it was composed of N-acetylglucosamine 1-pyrophosphate in labile ester linkage to an organic-soluble alcohol, possibly a polyisoprenoid alcohol. The methanolysis of sugar 1-pyrophosphate derivatives, including nucleoside diphosphate sugars, is discussed in relation to degradation products obtained from the lipid. 4. The lipids from the particulate enzyme preparation probably contained another compound in which N-acetylglucosamine 1-phosphate is attached to an organic-soluble alcohol; this may participate in the biosynthesis of another polysaccharide. 5. The function of the lipid intermediate in polymer biosynthesis is discussed.  相似文献   

4.
The natural substrate for the first alpha-D-mannosyltransferase of glycosylphosphatidylinositol biosynthesis in the protozoan parasite Trypanosoma brucei is D-GlcNalpha1-6-D-myo-inositol-1-P-sn-1, 2-diacylglycerol. Here we show that a diastereoisomer, D-GlcNalpha1-6-L-myo-inositol-1-P-sn-1,2-diacylglycerol, is an inhibitor of this enzyme in a trypanosomal cell-free system. Tests with other L-myo-inositol-containing compounds revealed that L-myo-inositol-1-phosphate is the principal inhibitory component and that methylation of the 2-OH group of the L-myo-inositol residue abolishes any inhibition. Comparisons between the natural substrate and the inhibitors suggested that the inhibitors bind to the first alpha-D-mannosyltransferase by means of charge interactions with the 1-phosphate group and/or hydrogen bonds involving the 3-, 4-, and 5-OH groups of the L-myo-inositol residue, which are predicted to occupy orientations identical to those of the 1-phosphate and 5-, 4-, and 3-OH groups, respectively, of the D-myo-inositol residue of the natural substrate. However, additional experiments indicated that the 4-OH group of the D-myo-inositol residue is unlikely to be involved in substrate recognition. None of the L-myo-inositol-containing compounds that inhibited glycosylphosphatidylinositol (GPI) biosynthesis in a parasite cell-free system had any effect on GPI biosynthesis in a comparable human (HeLa) cell-free system, suggesting that other related parasite-specific inhibitors of this essential pathway might be developed.  相似文献   

5.
Starch biosynthesis in cereal endosperm   总被引:3,自引:0,他引:3  
Stored starch generally consists of two d-glucose homopolymers, the linear polymer amylose and a highly branched glucan amylopectin that connects linear chains. Amylopectin structurally contributes to the crystalline organization of the starch granule in cereals. In the endosperm, amylopectin biosynthesis requires the proper execution of a coordinated series of enzymatic reactions involving ADP glucose pyrophosphorylase (AGPase), soluble starch synthase (SS), starch branching enzyme (BE), and starch debranching enzyme (DBE), whereas amylose is synthesized by AGPase and granule-bound starch synthase (GBSS). It is highly possible that plastidial starch phosphorylase (Pho1) plays an important role in the formation of primers for starch biosynthesis in the endosperm. Recent advances in our understanding of the functions of individual enzyme isoforms have provided new insights into how linear polymer chains and branch linkages are synthesized in cereals. In particular, genetic analyses of a suite of mutants have formed the basis of a new model outlining the role of various enzyme isoforms in cereal starch production. In our current review, we summarize the recent research findings related to starch biosynthesis in cereal endosperm, with a particular focus on rice.  相似文献   

6.
Biosynthesis of the wall teichoic acid in Bacillus licheniformis   总被引:18,自引:12,他引:6       下载免费PDF全文
1. The biosynthesis of the wall teichoic acid, poly(glycerol phosphate glucose), has been studied with a particulate membrane preparation from Bacillus licheniformis A.T.C.C. 9945. The precursor CDP-glycerol supplies glycerol phosphate residues, whereas UDP-glucose supplies only glucose to the repeating structure of the polymer. 2. Synthesis proceeds through polyprenol phosphate derivatives, and chemical studies and pulse-labelling techniques show that the first intermediate is the phosphodiester, glucose polyprenol monophosphate. CDP-glycerol donates a glycerol phosphate residue to this to give a second intermediate, (glycerol phosphate glucose phosphate) polyprenol. 3. The glucose residue in the lipid intermediates has the beta configuration, and chain extension in the synthesis of polymer occurs by transglycosylation with inversion of anomeric configuration at two stages.  相似文献   

7.
Glycerol-3-phosphate acyltransferase (GPAT) catalyses the first committed step in glycerolipid biosynthesis. The mitochondrial isoform (mtGPAT) is mainly expressed in liver, where it is highly regulated, indicating that mtGPAT may have a unique role in hepatic fatty acid metabolism. Because both mtGPAT and carnitine palmitoyl transferase-1 are located on the outer mitochondrial membrane, we hypothesized that mtGPAT directs fatty acyl-CoA away from beta-oxidation and toward glycerolipid synthesis. Adenoviral-mediated overexpression of murine mtGPAT in primary cultures of rat hepatocytes increased mtGPAT activity 2.7-fold with no compensatory effect on microsomal GPAT activity. MtGPAT overexpression resulted in a dramatic 80% reduction in fatty acid oxidation and a significant increase in hepatic diacylglycerol and phospholipid biosynthesis. Following lipid loading of the cells, intracellular triacylglycerol biosynthesis was also induced by mtGPAT overexpression. Changing an invariant aspartic acid residue to a glycine [D235G] in mtGPAT resulted in an inactive enzyme, which helps define the active site required for mammalian mtGPAT function. To determine if obesity increases hepatic mtGPAT activity, two models of rodent obesity were examined and shown to have >2-fold increased enzyme activity. Overall, these results support the concept that increased hepatic mtGPAT activity associated with obesity positively contributes to lipid disorders by reducing oxidative processes and promoting de novo glycerolipid synthesis.  相似文献   

8.
1. The synthesis of a polymer of N-acetylglucosamine 1-phosphate, occurring in the walls of Staphylococcus lactis N.C.T.C. 2102, was examined by using cell-free enzyme preparations. The enzyme system was particulate, and probably represents fragmented cytoplasmic membrane. 2. Uridine diphosphate N-acetylglucosamine was the only substrate required for polymer synthesis and labelled substrate was used to show that N-acetylglucosamine 1-phosphate is transferred as an intact unit from substrate to polymer. 3. The properties of the enzyme system were studied. A high concentration of Mg(2+) or Mn(2+) was required for optimum activity, and the pH optimum was about 8.5. 4. End-group analysis during synthesis in vitro showed that newly formed chains contain up to about 15 repeating units. Pulse-labelling indicated that chain extension occurs by transfer from the nucleotide to the ;sugar-end' of the chain, i.e. to the end that is not attached to peptidoglycan in the wall.  相似文献   

9.
Two glycosaminoglycan-protein linkage tetrasaccharide-serine compounds, GlcAβ1-3Galβ1-3Galβ1-4Xylβ1-O-Ser and GlcAβ1-3Gal(4-O-sulfate)β1-3Galβ1-4Xylβ1-O-Ser, were tested as hexosamine acceptors, using UDP-[3H]GlcNAc and UDP-[3H]GalNAc as sugar donors, and solubilized mouse mastocytoma microsomes as enzyme source. The nonsulfated Ser-tetrasaccharide was found to function as an acceptor for a GalNAc residue, whereas the Ser-tetrasaccharide containing a sulfated galactose unit was inactive. Characterization of the radio-labelled product by digestion with α-N-acetylgalactosaminidase and β-N-acetylhexosaminidase revealed that the [3H]GalNAc unit was α-linked, as in the product previously synthesized using serum enzymes, and not β-linked as found in the chondroitin sulfate polymer. Heparan sulfate/heparin biosynthesis could not be primed by either of the two linkage Ser-tetrasaccharides, since no transfer of [3H]GlcNAc from UDP-[3H]GlcNAc could be detected. By contrast, transfer of a [3H]GlcNAc unit to a [GlcAβ1-4GlcNAcα1-4]2-GlcAβ1-4-aMan hexasaccharide acceptor used to assay the GlcNAc transferase involved in chain elongation, was readily detected. These results are in agreement with the recent proposal that two different N-acetylglucosaminyl transferases catalyse the biosynthesis of heparan sulfate. Although the mastocytoma system contains both the heparan sulfate/heparin and chondroitin sulfate biosynthetic enzymes the Ser-tetrasaccharides do not seem to fulfil the requirements to serve as acceptors for the first HexNAc transfer reactions involved in the formation of these polysaccharides. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

10.
A novel sulfotransferase activity was discovered in fetal bovine serum using pig skin dermatan sulfate as an acceptor and [35S]3'-phosphoadenosine 5'-phosphosulfate as a sulfate donor. The enzyme was separated from chondroitin:GalNAc 6-O-sulfotransferase by chromatographic techniques. Enzymatic analysis of the reaction products demonstrated that the enzyme transferred sulfate to the C6 position of the GalNAc residue in the sequence -iduronic acid alpha1-3GalNAc beta1-4iduronic acid-. Thus, the enzyme has been identified as a hitherto unreported dermatan sulfate:GalNAc 6-O-sulfotransferase. The finding is in sharp contrast to the current concept that in dermatan sulfate biosynthesis GalNAc 4-O-sulfation is a prerequisite for iduronic acid formation by C5 epimerase.  相似文献   

11.
An early step in the assembly of the xylose----serine-linked proteoglycans is the transfer of glucuronic acid to the C-3 position of a galactose residue in the carbohydrate-protein linkage region. Since a similar reaction occurs in the biosynthesis of NHK-1 antigens, the question arose whether these processes are catalyzed by the same enzyme. In the present study, the proteoglycan-related glucuronosyltransferase activity in embryonic chick brain was found to be firmly membrane-associated, while the majority of the activity towards N-acetyllactosamine - a model substrate for HNK-1 antigen biosynthesis - was readily solubilized. No activity towards N-acetyllactosamine was found in embryonic chick cartilage, which is a rich source of the proteoglycan-related enzyme. Together with the results of mixed substrate experiments, these findings strongly indicate the existence of two separate glucuronosyltransferases catalyzing transfer to galactose residues.  相似文献   

12.
The side-chain asymmetry of physiological porphyrins is produced by the cooperative action of hydroxymethylbilane synthase and uroporphyrinogen (uro'gen) III synthase. Although the role of uro'gen III synthase is essential for the chemistry of porphyrin biosynthesis, many aspects, structural as well as mechanical, of uro'gen III synthase have yet to be studied. We report here an expression system in Escherichia coli and a purification procedure for human uro'gen III synthase. The enzyme in the lysate was unstable, but we found that glycerol prevents the activity loss in the lysate. The purified enzyme showed remarkable thermostability, particularly when kept in phosphate buffer containing DTT or EDTA, indicating that the enzyme activity may depend on its oxidation state. Examination of the relationship between the number of Cys residues that are accessible to 5,5'-dithiobis(2-nitrobenzoic acid) and the remaining activity during heat inactivation showed that a particular Cys residue is involved in activity loss. From the crystal structure of human uro'gen III synthase [Mathews et al. (2001) EMBO J. 20, 5832-5839], this Cys residue was considered to be Cys73, which is buried deep inside the enzyme, suggesting that Cys73 of human uro'gen III synthase plays an important role in enzyme activity.  相似文献   

13.
Vibrio cholerae O1 employs the ATP-binding cassette (ABC) transporter-dependent pathway for O antigen biosynthesis. Different from highly studied Klebsiella pneumoniae and Escherichia coli, it was reported that initial reaction of O antigen biosynthesis in V. cholerae O1 may be involved in WbeW protein, which is predicted to be a galactosyltransferase. In this work, we report expression and characterization of WbeW enzyme. WbeW was expressed as membrane-associated form in E. coli and it was obtained with high purity. The enzyme had a function of transferring Gal-1-P from UDP-Gal to Und-P, implying that initial glycan of O antigen in V. cholerae O1 can be composed of a Gal residue.  相似文献   

14.
The biosynthesis of uridine diphosphate N-acetyl-D-mannosaminuronic acid from uridine diphosphate N-acetyl-D-glucosamine occurs in two steps. The enzyme responsible for the first step, the epimerization of uridine diphosphate N-acetyl-D-glucosamine to uridine diphosphate N-acetyl-D-mannosamine, is separated by means of hydroxylapatite chromatography from the enzyme for the second step, the NAD-linked dehydrogenation of uridine diphosphate N-acetyl-D-mannosamine. At equilibrium of the epimerase reaction, the ratio of the glucosamine residue to the mannosamine residue is about 9:1.  相似文献   

15.
16.
Cinnamoyl-CoA reductase (CCR) is responsible for the CoA ester to aldehyde conversion in monolignol biosynthesis, which diverts phenylpropanoid-derived metabolites into the biosynthesis of lignin. To gain a better understanding of lignin biosynthesis and its biological function, a cDNA encoding CCR was identified from wheat (Triticum aestivum L.), and designated as Ta-CCR1. Phylogenetic analysis indicated that Ta-CCR1 grouped together with other monocot CCR sequences while it diverged from Ta-CCR2. DNA gel-blot and mapping analyses demonstrated that Ta-CCR1 is present as a single copy gene in the wheat genome. Recombinant Ta-CCR1 protein converted feruloyl CoA, 5-OH-feruloyl CoA, sinapoyl CoA, and caffeoyl CoA, but feruloyl-CoA was the best substrate, suggesting the preferential biosynthesis of G-type lignin. RNA gel-blot analysis indicated that Ta-CCR1 was highly expressed in stem, with lower expression in leaves, and undetectable expression in roots. CCR enzyme activity was increased progressively along with the lignin biosynthesis and stem maturity. During stem development, Ta-CCR1 mRNA levels remained high at elongation, heading, and milky stages in the wheat H4564 cultivar, while they declined dramatically at the heading and milky stages in stems of the C6001 cultivar. Ta-CCR1 mRNA expression paralleled extractable CCR enzyme activity in these two cultivars. Furthermore, high Ta-CCR1 mRNA levels and high CCR enzyme activity in wheat stem were correlated with a higher Klason lignin content and greater stem mechanical strength in the H4564 cultivar. This suggests that Ta-CCR1 and its related CCR enzyme may be involved in the regulation of lignin biosynthesis during stem maturity and then contributes to stem strength support in wheat.  相似文献   

17.
Purified rat liver UDP-GlcNAc:alpha-D-mannoside beta 1-2 N-acetylglucosaminyltransferase II (Bendiak, B., and Schachter, H. (1987) J. Biol. Chem. 262, 5775-5783) has been characterized kinetically, and its substrate specificity and inhibition characteristics have been determined. Kinetic data indicate an ordered, or largely ordered sequential mechanism, with UDP-GlcNAc binding prior to the acceptor. The minimal acceptor structure required for full activity is: (Formula: see text) The acceptor molecule must have a terminal Man alpha 1-6 residue, and a terminal GlcNAc beta 1-2Man alpha 1-3 branch to display any activity, but does not require the reducing GlcNAc residue, as the enzyme was about 50% as active after reduction of this residue to N-acetylglucosaminitol. Additional residues (Gal beta 1-4 on the GlcNAc beta 1-2Man alpha 1-3 arm, or a bisecting GlcNAc beta 1-4 on the beta-Man residue) abolish catalytic activity. These results suggest a rigid order in the biosynthesis of all N-linked complex oligosaccharides (bisected and nonbisected bi-, tri-, and tetraantennary), since the enzyme must act to completion prior to the action of either UDP-Gal:GlcNAc beta 1-4 galactosyltransferase or N-acetylglucosaminyltransferase III to make such structures. Inhibition studies with nucleotides, sugars, nucleotide-sugars, and their respective analogues revealed that analogues of UDP and UTP, in which the hydrogen at the 5 position of the uracil was substituted with -CH3, bromine, or mercury (as the mercaptide) were good reversible inhibitors of the enzyme, whereas substitution at other sites lessened the inhibitory potency, usually to a large degree.  相似文献   

18.
The intestinal pathogen Escherichia coli serotype O104:H4 (ECO104) can cause bloody diarrhea and haemolytic uremic syndrome. The ECO104 O antigen has the unique repeating unit structure [4Galα1–4Neu5,7,9Ac3α2–3Galβ1–3GalNAcβ1-], which includes the mammalian sialyl-T antigen as an internal structure. Previously, we identified WbwC from ECO104 as the β3Gal-transferase that synthesizes the T antigen, and showed that α3-sialyl-transferase WbwA transfers sialic acid to the T antigen. Here we identify the wbwB gene product as a unique α1,4-Gal-transferase WbwB that transfers Gal from UDP-Gal to the terminal sialic acid residue of Neu5Acα2–3Galβ1–3GalNAcα-diphosphate-lipid acceptor. NMR analysis of the WbwB enzyme reaction product indicated that Galα1-4Neu5Acα2–3Galβ1–3GalNAcα-diphosphate-lipid was synthesized. WbwB from ECO104 has a unique acceptor specificity for terminal sialic acid as well as the diphosphate group in the acceptor. The characterization studies showed that WbwB does not require divalent metal ion as a cofactor. Mutagenesis identified Lys243 within an RKR motif and both Glu315 and Glu323 of the fourth EX7E motif as essential for the activity. WbwB is the final glycosyltransferase in the biosynthesis pathway of the ECO104 antigen repeating unit. This work contributes to knowledge of the biosynthesis of bacterial virulence factors.  相似文献   

19.
The Pseudomonas aeruginosa A-band lipopolysaccharide (LPS) molecule has an O-polysaccharide region composed of trisaccharide repeat units of α1 → 2, α1 → 3, α1 → 3 linked D -rhamnose (Rha). The A-band polysaccharide is assembled by the α-D -rhamnosyltransferases, WbpX, WbpY and WbpZ. WbpZ probably transfers the first Rha residue onto the A-band accepting molecule, while WbpY and WbpX subsequently transfer two α1 → 3 linked Rha residues and one α1 → 2 linked Rha respectively. The last two transferases are predicted to be processive, alternating in their activities to complete the A-band polymer. The genes coding for these transferases were identified at the 3′ end of the A-band biosynthetic cluster. Two additional genes, psecoA and uvrD, border the 3′ end of the cluster and are predicted to encode a co-enzyme A transferase and a DNA helicase II enzyme respectively. Chromosomal wbpX, wbpY and wbpZ mutants were generated, and Western immunoblot analysis demonstrates that these mutants are unable to synthesize A-band LPS, while B-band synthesis is unaffected. WbpL, a transferase encoded within the B-band biosynthetic cluster, was previously proposed to initiate B-band biosynthesis through the addition of Fuc2NAc (2-acetamido-2,6-dideoxy-D -galactose) to undecaprenol phosphate (Und-P). In this study, chromosomal wbpL mutants were generated that did not express A band or B band, indicating that WbpL initiates the synthesis of both LPS molecules. Cross-complementation experiments using WbpL and its homologue, Escherichia coli WecA, demonstrates that WbpL is bifunctional, initiating B-band synthesis with a Fuc2NAc residue and A-band synthesis with either a GlcNAc (N-acetylglucosamine) or GalNAc (N-acetylgalactosamine) residue. These data indicate that A-band polysaccharide assembly requires four glycosyltransferases, one of which is necessary for initiating both A-band and B-band LPS synthesis.  相似文献   

20.
The metallo-β-lactamase (MBL) GOB-1 was expressed via a T7 expression system in Escherichia coli BL21(DE3). The MBL was purified to homogeneity and shown to exhibit a broad substrate profile, hydrolyzing all the tested β-lactam compounds efficiently. The GOB enzymes are unique among MBLs due to the presence of a glutamine residue at position 116, a zinc-binding residue in all known class B1 and B3 MBL structures. Here we produced and studied the Q116A, Q116N and Q116H mutants. The substrate profiles were similar for each mutant, but with significantly reduced activity compared with that of the wild-type. In contrast to the Q116H enzyme, which bound two zinc ions just like the wild-type, only one zinc ion is present in Q116A and Q116N. These results suggest that the Q116 residue plays a role in the binding of the zinc ion in the QHH site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号