首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Genomic analysis of synaptotagmin genes.   总被引:5,自引:0,他引:5  
M Craxton 《Genomics》2001,77(1-2):43-49
I used TBLASTn to probe DNA sequence databases with a consensus peptide sequence corresponding to the most highly conserved region of the rodent synaptotagmin (Syt) gene family, which is within the C2B domain. I found human homologues for all known rodent genes, and found six further human genomic loci which encode potential family members. I found eight potential family members in Caenorhabditis elegans, six in Drosophila melanogaster, and four in Arabidopsis thaliana. The C. elegans Syt1 homologue uniquely encodes two alternative C2B exons, one or the other of which is expressed at a time. Comparison of the genomic structures of the Syt genes makes clear the different phylogenies of the different subgroups. Knowledge of the genomic structures will aid the systematic investigation of alternative splicing in Syt genes.  相似文献   

2.
A prerequisite to understanding the evolution of the human X chromosome is the analysis of synteny of X-linked genes in different species. We have focused on the spermine synthase gene in human Xp22. 1. We show that whereas the human gene spans a genomic region of 54 kb, the Fugu rubripes gene is encompassed in a 4.7-kb region. However, we could not find conserved synteny between this region of human Xp22 and the equivalent F. rubripes region. A cosmid clone containing the F. rubripes gene does not contain other X-linked genes. Instead we identified homologs of human genes that are autosomally localized: the ryanodine receptor type I (RYRI), which is implicated in malignant hyperthermia and central core disease, and the HE6 gene. Comparison of the F. rubripes, Tetraodon fluviatilis, mouse, human, and Danio rerio 5'UTRs of spermine synthase highlights conserved sequences potentially involved in regulation. Interestingly, pseudogenes of this gene that are present in the human and mouse genomes seem to be absent in the compact F. rubripes genome. Analysis of a D. rerio PAC clone containing spermine synthase shows an intermediate genomic size in this fish. Sequence analysis of this PAC clone did not reveal other known genes: neither the RYRI gene, nor the HE6 gene, nor other human Xp22 genes were identified.  相似文献   

3.
A novel Drosophila melanogaster gene UBL3 was characterized and shown to be highly conserved in man and Caenorhabditis elegans (C. elegans). The human and mouse homologues were cloned and sequenced. UBL3 is a ubiquitin-like protein of unknown function with no conserved homologues in yeast. Mapping of the human and mouse UBL3 genes places them within a region of shared gene order between human and mouse chromosomes on human chromosome 13q12-13 and telomeric mouse chromosome 5 (MMU5).  相似文献   

4.
The clustering and coordinate regulation of many imprinted genes justifies positional searches for imprinted genes adjacent to known ones. We recently characterized a locus on 20q13, containing GNAS1, which has a highly complex imprinted expression pattern. In a search for neighbouring genes, we have now characterized a new gene, TH1, downstream of GNAS1. TH1 and GNAS1 are separated by more than 70 kb consisting largely of interspersed repetitive DNA. TH1 is the homologue of a gene that, in Drosophila, lies adjacent to the DNA repair gene mei-41. We have determined the full-length structures of human, mouse and Drosophila TH1. Though of unknown function, TH1 is highly conserved and widely expressed. Nonetheless, there is no similar Caenorhabditis elegans protein. We have also determined the complete genomic structures of human and Drosophila TH1. The Drosophila gene has five exons spanning 2.6 kb. The last three introns have precise equivalents in the human gene, which has 15 exons spanning 14 kb and is transcribed away from GNAS1. Using a single-nucleotide polymorphism in the 3' untranslated region, we have demonstrated biallelic TH1 expression in human fetal tissues, suggesting that, unlike GNAS1, TH1 is probably not imprinted. Immediately downstream of TH1 lies CTSZ, encoding the recently described cysteine protease, cathepsin Z. We have also elucidated the genomic structure of this gene; it has six exons spanning 12 kb and is oriented tail-to-tail with TH1, only 70 bp separating their polyadenylation sites. A polymorphism was again identified within the CTSZ 3' untranslated region and used to demonstrate biallelic expression in fetal tissues.  相似文献   

5.
6.
7.
8.
Genomic structure and chromosomal mapping of the murine CD40 gene.   总被引:3,自引:0,他引:3  
The B cell-associated surface molecule, CD40, is likely to play a central role in the expansion of Ag-stimulated B cells, and their interaction with activated Th cells. In our study we have isolated genomic clones of murine CD40 from a mouse liver genomic DNA library. Comparison with the murine CD40 cDNA sequence revealed the presence of nine exons that together contain the entire murine CD40 coding region, and span approximately 16.3 kb of genomic DNA. The intron/exon structure of the CD40 gene resembles that of the low affinity nerve growth factor receptor gene, a close homolog of both human and murine CD40. In both cases the functional domains of the receptor molecules are separated onto different exons throughout the genes. Southern blot analysis demonstrated that murine CD40 is a single copy gene that maps in the distal region of mouse chromosome 2.  相似文献   

9.
《Gene》1998,216(1):13-19
The human FRG1 gene maps to human chromosome 4q35 and was identified as a candidate for facioscapulohumeral muscular dystrophy. However, FRG1 is apparently not causally associated with the disease and as yet, its function remains unclear. We have cloned homologues of FRG1 from two additional vertebrates, the mouse and the Japanese puffer fish Fugu rubripes, and investigated the genomic organization of the genes in the two species. The intron/exon structure of the genes is identical throughout the protein coding region, although the Fugu gene is five times smaller than the mouse gene. We have also identified FRG1 homologues in two nematodes; Caenorhabditis elegans and Brugia malayi. The FRG1 protein is highly conserved and contains a lipocalin sequence motif, suggesting it may function as a transport protein.  相似文献   

10.
As a result of genome, EST and cDNA sequencing projects, there are huge numbers of predicted and/or partially characterised protein sequences compared with a relatively small number of proteins with experimentally determined function and structure. Thus, there is a considerable attention focused on the accurate prediction of gene function and structure from sequence by using bioinformatics. In the course of our analysis of genomic sequence from Fugu rubripes, we identified a novel gene, SAND, with significant sequence identity to hypothetical proteins predicted in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans, a Drosophila melanogaster gene, and mouse and human cDNAs. Here we identify a further SAND homologue in human and Arabidopsis thaliana by use of standard computational tools. We describe the genomic organisation of SAND in these evolutionarily divergent species and identify sequence homologues from EST database searches confirming the expression of SAND in over 20 different eukaryotes. We confirm the expression of two different SAND paralogues in mammals and determine expression of one SAND in other vertebrates and eukaryotes. Furthermore, we predict structural properties of SAND, and characterise conserved sequence motifs in this protein family.  相似文献   

11.
12.
Shim J  Lee J 《Molecules and cells》2005,19(3):452-457
The adaptor protein (AP) complexes are involved in membrane transport of many proteins. There are 3 AP complexes in C. elegans unlike mammals that have four. To study the biological functions of the AP-3 complexes of C. elegans, we sought homologues of the mouse and human genes that encode subunits of the AP-3 complexes by screening C. elegans genomic and EST sequences. We identified single copies of homologues of the m3, s3, b3 and d genes. The medium chain of AP-3 is encoded by a single gene in C. elegans but two different genes in mammals. Since there are no known mutations in these genes in C. elegans, we performed RNAi to assess their functions in development. RNAi of each of the genes caused embryonic and larval lethal phenotypes. APM-3 is expressed in most cells, particularly strongly in spermatheca and vulva. We conclude that the products of the C. elegans m3, s3, b3 and d genes are essential for embryogenesis and larval development.  相似文献   

13.
We have cloned cDNA for TTYH1, a human homologue of the Drosophila melanogaster tweety (tty) gene. The 450-residue predicted protein shows 27% amino acid sequence identity (51% similarity) to the Drosophila protein, which contains an additional C-terminal repetitive region. A second Drosophila homologue exhibits 42% identity (65% similarity) to the tty protein. Mouse (Ttyh1), macaque, and Caenorhabditis elegans homologues were also identified, and the complete coding sequence for the mouse gene was determined. The mouse protein is 91% identical to the human protein. Hydrophobicity analysis of the tty-related proteins indicates that they represent a new family of membrane proteins with five potential membrane-spanning regions. The yeast FTR1 and FTH1 iron transporter proteins and the mammalian neurotensin receptors 1 and 2 have a similar hydrophobicity profile, although there is no detectable sequence homology to the tty-related proteins. This suggests that the tweety-related proteins could be involved in transport of iron or other divalent cations or alternatively that they may be membrane-bound receptors. TTYH1 was mapped to chromosome 19q13.4 by FISH and by radiation hybrid mapping using the Stanford G3 panel.  相似文献   

14.
Teneurins are a novel family of transmembrane proteins conserved between invertebrates and vertebrates. There are two members in Drosophila, one in C. elegans and four members in mouse. Here, we describe the analysis of the genomic structure of the human teneurin-1 gene. The entire human teneurin-1 (TEN1) gene is contained in eight PAC clones representing part of the chromosomal locus Xq25. Interestingly, many X-linked mental retardation syndromes (XLMR) and non-specific mental retardation (MRX) are mapped to this region. The location of the human TEN1 together with the neuronal expression makes TEN1 a candidate gene for XLMR and MRX. We also identified large parts of the human teneurin-2 sequence on chromosome 5 and sections of human teneurin-4 at chromosomal position 11q14. Database searches resulted in the identification of ESTs encoding parts of all four human members of the teneurin family. Analysis of the genomic organization of the Drosophila ten-a gene revealed the presence of exons encoding a long form of ten-a, which can be aligned with all other teneurins known. Sequence comparison and phylogenetic trees of teneurins show that insects and vertebrates diverged before the teneurin ancestor was duplicated independently in the two phyla. This is supported by the presence of conserved intron positions between teneurin genes of man, Drosophila and C. elegans. It is therefore not possible to class any of the vertebrate teneurins with either Drosophila Ten-a or Ten-m. The C-terminal part of all teneurins harbours 26 repetitive sequence motifs termed YD-repeats. YD-repeats are most similar to the repeats encoded by the core of the rearrangement hot spot (rhs) elements of Escherichia coli. This makes the teneurin ancestor a candidate gene for the source of the rhs core acquired by horizontal gene transfer.  相似文献   

15.
16.
17.
18.
19.
A putative Drosophila homolog of the Friedreich's ataxia disease gene (FRDA) has been cloned and characterized; it has been named Drosophila frataxin homolog (dfh). It is located at 8C/D position on X chromosome and is spread over 1kb, a much smaller genomic region than the human gene. Its genomic organization is simple, with a single intron dividing the coding region into two exons. The predicted encoded product has 190 amino acids, being considered a frataxin-like protein on the basis of the sequence and secondary structure conservation when compared with human frataxin and related proteins from other eukaryotes. The closest match between the Drosophila and the human proteins involved a stretch of 38 amino acids at C-terminus, encoded by dfh exon 2, and exons 4 and 5a of the FRDA gene, respectively. This highly conserved region is very likely to form a functional domain with a beta sheet structure flanked by alpha-helices where the sequence is less conserved. A signal peptide for mitochondrial import has also been predicted in the Drosophila frataxin-like protein, suggesting its mitochondrial localization, as occurs for human frataxin and other frataxin-like proteins described in eukaryotes. The Drosophila gene is expressed throughout the development of this organism, with a peak of expression in 6-12h embryos, and showing a spatial ubiquitous pattern from 4h embryos to the last embryonic stage examined. The isolation of dfh will soon make available specific dfh mutants that help in understanding the pathogenesis of FRDA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号