首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Efficient initiation of mammalian mRNA translation at a CUG codon.   总被引:12,自引:1,他引:11  
  相似文献   

2.
Chromosomal rearrangements apparently account for the presence of a primate-specific gene (protease serine 3) in chromosome 9. This gene encodes, as the result of alternative splicing, both mesotrypsinogen and trypsinogen 4. Whereas mesotrypsinogen is known to be a pancreatic protease, neither the chemical nature nor biological function of trypsinogen 4 has been explored previously. The trypsinogen 4 sequence contains two predicted translation initiation sites: an AUG site that codes for a 72-residue leader peptide on Isoform A, and a CUG site that codes for a 28-residue leader peptide on Isoform B. We report studies that provide evidence for the N-terminal amino acid sequence of trypsinogen 4 and the possible mechanism of expression of this protein in human brain and transiently transfected cells. We raised mAbs against a 28-amino acid synthetic peptide representing the leader sequence of Isoform B and against recombinant trypsin 4. By using these antibodies, we isolated and chemically identified trypsinogen 4 from extracts of both post mortem human brain and transiently transfected HeLa cells. Our results show that Isoform B, with a leucine N terminus, is the predominant (if not exclusive) form of the enzyme in post mortem human brain, but that both isoforms are expressed in transiently transfected cells. On the basis of our studies on the expression of a series of trypsinogen 4 constructs in two different cell lines, we propose that unconventional translation initiation at a CUG with a leucine, rather than a methionine, N terminus may serve as a means to regulate protein expression.  相似文献   

3.
4.
We recently demonstrated that the very long 5'-untranslated region (5'-UTR) of the vascular endothelial growth factor (VEGF) mRNA contains two independent internal ribosome entry sites (IRES A and B). In the human sequence, four potential CUG translation initiation codons are located in between these IRES and are in frame with the classical AUG start codon. By in vitro translation and COS-7 cell transfections, we demonstrate that a high mol wt VEGF isoform [called large VEGF (L-VEGF)] is generated by an alternative translation initiation process, which occurs at the first of these CUG codons. Using a bicistronic strategy, we show that the upstream IRES B controls the translation initiation of L-VEGF. This isoform is 206 amino acids longer than the classical AUG-initiated form. With a specific antibody raised against this NH2 extension, we show that the L-VEGF is present in different mouse tissues or in transfected COS-7 cells. We also demonstrate that L-VEGF is cleaved into two fragments: a 23-kDa NH2-specific fragment and a fragment with an apparent size similar to that of the classical AUG-initiated form. This cleavage requires the integrity of a hydrophobic sequence located in the central part of the L-VEGF molecule. This sequence actually plays the role of signal peptide in the classical AUG-initiated form. The AUG-initiated form and the COOH cleavage product of the L-VEGF are both secreted. In contrast, the large isoform and its NH2 fragment present an intracellular localization. These data unravel a further level of complexity in the regulation of VEGF expression.  相似文献   

5.
Polymicrobial sepsis impairs skeletal muscle protein synthesis, which results from impairment in translation initiation under basal conditions. The purpose of the present study was to test the hypothesis that sepsis also impairs the anabolic response to amino acids, specifically leucine (Leu). Sepsis was induced by cecal ligation and puncture, and 24 h later, Leu or saline (Sal) was orally administered to septic and time-matched nonseptic rats. The gastrocnemius was removed 20 min later for assessment of protein synthesis and signaling components important in peptide-chain initiation. Oral Leu increased muscle protein synthesis in nonseptic rats. Leu was unable to increase protein synthesis in muscle from septic rats, and synthetic rates remained below those observed in nonseptic + Sal rats. In nonseptic + Leu rats, phosphorylation of eukaryotic initiation factor (eIF)4E-binding protein 1 (4E-BP1) in muscle was markedly increased compared with values from time-matched Sal-treated nonseptic rats. This change was associated with redistribution of eIF4E from the inactive eIF4E.4E-BP1 to the active eIF4E.eIF4G complex. In septic rats, Leu-induced phosphorylation of 4E-BP1 and changes in eIF4E distribution were completely abrogated. Sepsis also antagonized the Leu-induced increase in phosphorylation of S6 kinase 1 and ribosomal protein S6. Sepsis attenuated Leu-induced phosphorylation of mammalian target of rapamycin and eIF4G. The ability of sepsis to inhibit anabolic effects of Leu could not be attributed to differences in plasma concentrations of insulin, insulin-like growth factor I, or Leu between groups. In contrast, the ability of exogenous insulin-like growth factor I to stimulate the same signaling components pertaining to translation initiation was not impaired by sepsis. Hence, sepsis produces a relatively specific Leu resistance in skeletal muscle that impairs the ability of this amino acid to stimulate translation initiation and protein synthesis.  相似文献   

6.
7.
A high-resolution cryo-EM reconstruction of a ribosome-bound dicistrovirus IRES (Schüler et al., 2006) and the crystal structure of its ribosome binding domain (Pfingsten et al., 2006) provide new insights into an exceptional eukaryotic translation mechanism.  相似文献   

8.
The translation initiation efficiency of a given mRNA is determined by its translation initiation region (TIR). mRNAs are selected into 30S initiation complexes according to the strengths of the secondary structure of the TIR, the pairing of the Shine-Dalgarno sequence with 16S rRNA, and the interaction between initiator tRNA and the start codon. Here, we show that the conversion of the 30S initiation complex into the translating 70S ribosome constitutes another important mRNA control checkpoint. Kinetic analysis reveals that 50S subunit joining and dissociation of IF3 are strongly influenced by the nature of the codon used for initiation and the structural elements of the TIR. Coupling between the TIR and the rate of 70S initiation complex formation involves IF3- and IF1-induced rearrangements of the 30S subunit, providing a mechanism by which the ribosome senses the TIR and determines the efficiency of translational initiation of a particular mRNA.  相似文献   

9.
The genetic code is degenerate; thus, protein evolution does not uniquely determine the coding sequence. One of the puzzles in evolutionary genetics is therefore to uncover evolutionary driving forces that result in specific codon choice. In many bacteria, the first 5–10 codons of protein‐coding genes are often codons that are less frequently used in the rest of the genome, an effect that has been argued to arise from selection for slowed early elongation to reduce ribosome traffic jams. However, genome analysis across many species has demonstrated that the region shows reduced mRNA folding consistent with pressure for efficient translation initiation. This raises the possibility that unusual codon usage is a side effect of selection for reduced mRNA structure. Here we discriminate between these two competing hypotheses, and show that in bacteria selection favours codons that reduce mRNA folding around the translation start, regardless of whether these codons are frequent or rare. Experiments confirm that primarily mRNA structure, and not codon usage, at the beginning of genes determines the translation rate.  相似文献   

10.
The eukaryotic translation initiation factor 1 binds to the ribosome during translation initiation. It is instrumental for initiator-tRNA and mRNA binding, and has a function in selection of the authentic start codon. Here, we show that the archaeal homolog aIF1 has analogous functions. The aIF1 protein of the archaeon Sulfolobus solfataricus is bound to the small ribosomal subunit during translation initiation and accelerates binding of initiator-tRNA and mRNA to the ribosome. Accordingly, aIF1 stimulated translation of an mRNA in a S. solfataricus in vitro translation system. Moreover, this study suggested that the C terminus of the factor is of relevance for its function.  相似文献   

11.
lacZ translation initiation mutations   总被引:32,自引:0,他引:32  
  相似文献   

12.
Although ribosome-profiling and translation initiation sequencing (TI-seq) analyses have identified many noncanonical initiation codons, the precise detection of translation initiation sites (TISs) remains a challenge, mainly because of experimental artifacts of such analyses. Here, we describe a new method, TISCA (TIS detection by translation Complex Analysis), for the accurate identification of TISs. TISCA proved to be more reliable for TIS detection compared with existing tools, and it identified a substantial number of near-cognate codons in Kozak-like sequence contexts. Analysis of proteomics data revealed the presence of methionine at the NH2-terminus of most proteins derived from near-cognate initiation codons. Although eukaryotic initiation factor 2 (eIF2), eIF2A and eIF2D have previously been shown to contribute to translation initiation at near-cognate codons, we found that most noncanonical initiation events are most probably dependent on eIF2, consistent with the initial amino acid being methionine. Comprehensive identification of TISs by TISCA should facilitate characterization of the mechanism of noncanonical initiation.  相似文献   

13.
Protein synthesis in skeletal muscle of adult rats increases in response to oral gavage of supraphysiological doses of leucine. However, the effect on protein synthesis of a physiological rise in plasma leucine has not been investigated in neonates, an anabolic population highly sensitive to amino acids and insulin. Therefore, in the current study, fasted pigs were infused intra-arterially with leucine (0, 200, or 400 micromol.kg(-1).h(-1)), and protein synthesis was measured after 60 or 120 min. Protein synthesis was increased in muscle, but not in liver, at 60 min. At 120 min, however, protein synthesis returned to baseline levels in muscle but was reduced below baseline values in liver. The increase in protein synthesis in muscle was associated with increased plasma leucine of 1.5- to 3-fold and no change in plasma insulin. Leucine infusion for 120 min reduced plasma essential amino acid levels. Phosphorylation of eukaryotic initiation factor (eIF)-4E-binding protein-1 (4E-BP1), ribosomal protein (rp) S6 kinase, and rpS6 was increased, and the amount of eIF4E associated with its repressor 4E-BP1 was reduced after 60 and 120 min of leucine infusion. No change in these biomarkers of mRNA translation was observed in liver. Thus a physiological increase in plasma leucine stimulates protein synthesis in skeletal muscle of neonatal pigs in association with increased eIF4E availability for eIF4F assembly. This response appears to be insulin independent, substrate dependent, and tissue specific. The results suggest that the branched-chain amino acid leucine can act as a nutrient signal to stimulate protein synthesis in skeletal muscle of neonates.  相似文献   

14.
Stenström CM  Jin H  Major LL  Tate WP  Isaksson LA 《Gene》2001,263(1-2):273-284
The codon that follows the AUG initiation triplet (+2 codon) affects gene expression in Escherichia coli. We have extended this analysis using two model genes lacking any apparent Shine-Dalgarno sequence. Depending on the identity of the +2 codon a difference in gene expression up to 20-fold could be obtained. The effects did not correlate with the levels of intracellular pools of cognate tRNA for the +2 codon, with putative secondary mRNA structures, or with mRNA stability. However, most +2 iso-codons that were decoded by the same species of tRNA gave pairwise similar effects, suggesting that the effect on gene expression was associated with the decoding tRNA. High adenine content of the +2 codon was associated with high gene expression. Of the fourteen +2 codons that mediated the highest efficiency, all except two had an adenine as the first base of the codon. Analysis of the 3540 E. coli genes from the TransTerm database revealed that codons associated with high gene expression in the two expression systems are over-represented at the +2 position in natural genes. Codons that are associated with low gene expression are under-represented. The data suggest that evolution has favored codons at the +2 position that give high translation initiation.  相似文献   

15.
The efficiency of translation initiation at triplets differing at one residue from AUG was tested by transient expression in protoplasts from two different plant species. All possible alternative codons were tested. Some triplets showed significant CAT activity, with CUG (30% of the AUG activity) being most active. Most others had between 5 and 15% of the activity obtained from AUG, whereas UUG and AUC yielded about 2% and the two composed only of purines, AAG and AGG, had no significant activity. Translation initiation from AUC, especially, responded to leader sequences outside the immediate context which did not affect translation initiation from AUG.  相似文献   

16.
aIF2 beta is the archaeal homolog of eIF2 beta, a member of the eIF2 heterotrimeric complex, implicated in the delivery of Met-tRNA(i)(Met) to the 40S ribosomal subunit. We have determined the solution structure of the intact beta-subunit of aIF2 from Methanobacterium thermoautotrophicum. aIF2 beta is composed of an unfolded N terminus, a mixed alpha/beta core domain and a C-terminal zinc finger. NMR data shows the two folded domains display restricted mobility with respect to each other. Analysis of the aIF2 gamma structure docked to tRNA allowed the identification of a putative binding site for the beta-subunit in the ternary translation complex. Based on structural similarity and biochemical data, a role for the different secondary structure elements is suggested.  相似文献   

17.
Cell cycle-dependent translation initiation: IRES elements prevail   总被引:15,自引:0,他引:15  
Sachs AB 《Cell》2000,101(3):243-245
  相似文献   

18.
Overview: mechanism of translation initiation in eukaryotes   总被引:1,自引:0,他引:1  
W C Merrick 《Enzyme》1990,44(1-4):7-16
Evidence to date has placed considerable emphasis on protein synthesis initiation as the dominant site of translational control. Two specific aspects are regulated, the binding of the initiator tRNA to the 40S subunits (as a ternary complex with eIF-2 and GTP) and the subsequent binding of mRNA to the complex of the 40S subunit with initiator tRNA. In addition to regulation, eIF-2 and Met-tRNAf are in large part responsible for selection of the initiating AUG codon. The utilization of most host mRNAs requires an m7G cap structure at the 5' end. However, many viral systems appear to use one of two alternate initiation schemes referred to as re-initiation and internal initiation. The function of specific initiation factors is presented and the consequences of altering the activity of these factors is discussed.  相似文献   

19.
Pestova TV  Hellen CU 《Cell》2003,115(6):650-652
The structure of the eukaryotic initiation factor eIF4E bound to a cognate domain of eIF4G and m(7)GDP in this issue of Cell shows that these factors undergo coupled folding to form a stable complex with high cap binding activity that promotes efficient ribosomal attachment to mRNA during translation initiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号