首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of cropping pea or barley and the decomposition of their residues on Phymatotrichum root rot of cotton were studied for five years. Little or no changes occurred in pH, content of carbon or moisture in the soil, but there were significant increases in populations of competitive microflora. Best control was obtained in infested soil which was cropped to either pea or barley in winter or in soil which received the higher tonnage of Papago pea plants. Reduction in incidence of root rot may be attributed to premature germination of overwintering propagules making hyphae vulnerable to the chemicals of decomposition and to competition of microflora in the soil.Former Graduate Assistant in Research, Associate Professor, Professor, and Former Professor of Plant Pathology  相似文献   

2.
Five spring barleys, grown either in pots out of doors or in the field, were inoculated with barley yellow dwarf virus (BYDV) using 5, 10, 20 or 50 infective aphids (Rhopalosiphum padi) per plant. Control plants of each variety received no aphids. Infection with all aphid numbers had highly significant adverse effects on all varieties except Cb 1029, an early maturing BYDV-resistant barley of Ethiopian origin. 12583 Co, a locally bred, late maturing barley possessing the same resistance gene as Cb 1029 suffered more in a pot experiment, but less than three susceptible varieties all of which were severely damaged even when few infective aphids were used. Progressive effects with increasing aphid numbers, indicative of dosage response, occurred in some varieties. These effects included delay in heading and increased stunting, but not less yield. In Cb 1029, BYDV infection caused a reduction in the number of heads per plant, but this was partly compensated for by an increase in the number of grains per head. Conversely, BYDV infection in 12583 Co caused an increase in the number of heads, partly offset by a decrease in the number of Brains tier head.  相似文献   

3.
Resistance to Sitobion avenue and Metopolophium dirhodum was assessed in the glasshouse by releasing immature aphids on uncovered wheat and barley plants at the tillering stage. Six cultivars of winter wheat were tested with S. avenue and of these cv. Kador was resistant and cv. Maris Huntsman susceptible. Among seven cultivars of barley, cv. CI16145 was more resistant to S. avenue than any other whilst cvs Tyra and Nirakei 10 were the most susceptible, but the cultivars did not differ significantly in the numbers of M. dirhodum on them, although there were ranking differences similar to those observed with S. avenue.  相似文献   

4.
A barley variety of Ethiopian origin, with a single Mendelian gene con-fering tolerance to barley yellow dwarf virus (BYDV), was equally tolerant to a number of isolates of the virus, whereas a susceptible European barley was more susceptible to isolates transmitted by Rhopalosiphum padi L. than to those transmitted by Macrosiphum (Sitobion) avenae (Fab). However, hybrids between these two varieties homozygous for the Ethiopian tolerance gene were more tolerant to ‘mild’ than to ‘severe’ isolates, irrespective of the vector specificity. The European variety was damaged more severely by all isolates when infected early than when infected late in its development, but the hybrids were damaged more severely by M. awraae-transmitted isolates when infected late. It is suggested that in susceptible plants the concentration, rather than the virulence, of the virus determines disease severity, whereas the reverse is true in plants possessing a gene which reduces virus multiplication. Virus concentration appears to determine the severity of R. padi-transmitted isolates, while virulence determines the severity of M. avenae-transmitted isolates. The latter would also seem to be adapted towards late infection.  相似文献   

5.
Pyricularia grisea is the most destructive and cosmopolitan fungal pathogen of rice and it can also cause disease on other agriculturally important cereals. We determined the number, location and interaction of quantitative trait loci (QTL) associated with resistance to P. grisea isolates obtained from rice (THL142 and THL222) and barley (TH16 and THL80) grown in Thailand. The isolates showed a spectrum of virulence when used to inoculate a series of differentials. We used a reference blast resistance mapping population of rice (IR64 × Azucena). IR64 was highly resistant, and Azucena was highly susceptible, to all four isolates. The numbers of resistant vs. susceptible progeny suggest that the resistance of IR64 is determined by two or three genes with additive effects. The correlation coefficients for all pairwise comparisons of disease severity were high and highest between barley isolates and between rice isolates. Four QTL were detected, one on each of the following chromosomes 2, 8, 9 and 10. IR64 contributed resistance alleles at three of the QTL (chromosomes 2, 8 and 9). Azucena contributed the resistance allele at the QTL on chromosome 10 in response to inoculation with isolate THL142. The results of the QTL analysis support interpretation of the phenotypic frequency distributions regarding the number of genes determining resistance to the four isolates in this population. Our results are novel in adding blast isolates from barley to the catalogue of pathogen specificities to which a gene, or genes, from IR64 confer resistance.  相似文献   

6.
Newly-emerged ears of barley soon became colonised by micro-organisms with numbers increasing to 5·8 × 105 viable propagules/g dry weight by harvest. Bacteria were numerically predominant throughout. Yeasts and yeast-like fungi were also numerous during the early stages of grain development but were exceeded by propagules of filamentous fungi during ripening, with Cladosporium spp., Alternaria alternata, Epicoccum purpurascens and Verticillium lecanii most abundant. Numbers of most micro-organisms were greatest in a wet season but Alternaria was equally abundant in hot dry weather. Application of fungicides at or after anthesis modified the grain microflora. Captafol was most effective overall in decreasing numbers of fungi. However, benomyl decreased Cladosporium inoculum more than catpafol but was ineffective against Alternaria which became more numerous on benomyl-treated grain than on untreated. Yield increases of up to 4% were obtained by late fungicide treatment, least in a hot, dry year. Germination was also increased by some treatments by up to 5%.  相似文献   

7.
Four PAV-like isolates of barley yellow dwarf virus (BYDV) were identified as causing very severe (RG), severe (2t), moderately severe (3b) and mild symptoms (13t) in barley (Hordeum vulgare) cultivar Plaisant in a growth chamber at 25 days after inoculation. These isolates had different effects on a range of barley genotypes. Cultivar Vixen, which contains the Yd2 resistance gene, and 80-81 BQCB10 were not affected by any isolate. Five other genotypes were significantly affected by at, least one of the isolates. Line Ea52 (which is a mutant of the Japanese cultivar Chikurine Ibaraki) was more susceptible to BYDV-PAV than Chikurin Ibaraki 1. No serological differences were detected between the four isolates using monoclonal or polyclonal antibodies. Virus antigen concentration, estimated by enzyme-linked immunosorbent assay (ELISA), was correlated with the decrease in the shoot fresh weight for all isolates and all genotypes except for Vixen and 80-81BQCB10. In field tests, the severity of symptoms induced by the BYDV-PAV isolates was in accordance with that estimated in the growth chamber. However isolate 2t was more severe on cultivar Vixen and overcame the partial resistance of Chikurin Ibaraki 1 to the three other isolates. The results show that virus antigen concentration not only contributes to characterizing the resistance levels of barley genotypes but also the severity of BYDV-PAV isolates.  相似文献   

8.
Four PAV-like isolates of barley yellow dwarf virus (BYDV) were identified as causing very severe (RG), severe (2t), moderately severe (3b) and mild symptoms (13t) in barley (Hordeum vulgare) cultivar Plaisant in a growth chamber at 25 days after inoculation. These isolates had different effects on a range of barley genotypes. Cultivar Vixen, which contains the Yd2 resistance gene, and 80–81BQCB10 were not affected by any isolate. Five other genotypes were significantly affected by at least one of the isolates. Line Ea52 (which is a mutant of the Japanese cultivar Chikurine Ibaraki) was more susceptible to BYDV-PAV than Chikurin Ibaraki 1. No serological differences were detected between the four isolates using monoclonal or polyclonal antibodies. Virus antigen concentration, estimated by enzyme-linked immunosorbent assay (ELISA), was correlated with the decrease in the shoot fresh weight for all isolates and all genotypes except for Vixen and 80–81BQCB10. In field tests, the severity of symptoms induced by the BYDV-PAV isolates was in accordance with that estimated in the growth chamber. However isolate 2t was more severe on cultivar Vixen and overcame the partial resistance of Chikurin Ibaraki 1 to the three other isolates. The results show that virus antigen concentration not only contributes to characterizing the resistance levels of barley genotypes but also the severity of BYDV-PAV isolates.  相似文献   

9.
The potato cyst nematode, Globodera pallida, is one of the most important pests of potato worldwide. Owing to regulatory considerations and potential environmental impact, control options for this nematode are becoming increasingly limited. Solanum sisymbriifolium and biological control agents offer viable alternative options for controlling G. pallida. Therefore, experiments were conducted to determine the effect of the nematode trap crop S. sisymbriifolium, alone or in combination with the biocontrol agents Trichoderma harzianum or Plectosphaerella cucumerina, on population decline of G. pallida. Experiments were conducted for three different ‘cropping systems’: potato (Solanum tuberosum), S. sisymbriifolium, or soil only (fallow), each followed by a potato crop. Soil was amended with P. cucumerina, T. harzianum or left unamended, and then infested with nematodes at a rate of five eggs g?1 of soil. After 16 weeks in the greenhouse, plants were removed and the soil containing cysts was refrigerated at 4°C for 8 weeks, and then planted to potato. Cysts of G. pallida were counted after an additional 16‐week period. The Pf/Pi of G. pallida was significantly reduced by 99% in potato following S. sisymbriifolium compared to both the potato‐following‐fallow and the potato‐following‐potato treatments. Amendment of soil with T. harzianum significantly reduced Pf/Pi of G. pallida by 42–47% in the potato‐following‐potato but not in either the potato‐after‐fallow nor in the potato‐after‐S. sisymbriifolium cycles which supports evidence that the plant species may play a role in the biocontrol activity of this fungus. Addition of the fungus P. cucumerina resulted in a 64% decrease in Pf/Pi in the potato‐following‐fallow in one experiment, and an 88% decrease in Pf/Pi in potato‐following‐potato but the decrease in Pf/Pi was not consistent over all experiments. However, both biocontrol fungi resulted in lower numbers of progeny cysts after an initial 16‐week incubation with potato. To look at the effect of varied population density of the nematode on efficacy of S. sisymbriifolium to reduce G. pallida populations, potato, S. sisymbriifolium, or barley were planted into soil infested with G. pallida at rates of 5, 20 or 40 eggs g?1 soil applied as cysts (20, 80 or 160 cysts pot?1). After 16 weeks, numbers of cysts produced in each treatment were determined for each infestation rate. No new cysts were recovered from either S. sisymbriifolium or barley treatments, confirming that neither plant is a host for G. pallida. High numbers of cysts were recovered with potato. Soil from each treatment (containing original cysts and newly‐formed cysts when present) were then planted with potato. After an additional 16 weeks, few cysts were found in the potato‐after‐ S. sisymbriifolium treatments regardless of initial infestation rate. When potato followed barley, numbers of cysts were similar to those found after a single cycle of potato, indicating that the barley crop had no effect on the survival of initial inoculum. Overall, these results suggest that S. sisymbriifolium has potential to significantly reduce G. pallida populations, and also that the cropping system (i.e. the sequence of non‐host and host plants) may play a significant role in the efficacy of fungal biological control agents.  相似文献   

10.
The content of Barley yellow dwarf virus (BYDV) in roots and leaves of barley seedling plants differing in their level of resistance was assessed by quantitative ELISA 1–42 days after inoculation with the strain of BYDV (PAV). High virus accumulation in roots and low concentration in leaves was characteristic of the period 9–15 days after inoculation. In leaves, the differences in virus content between resistant and susceptible genotypes became significant after 15 days and resistance to virus accumulation was better expressed 30–39 days after inoculation. Roots of resistant materials exhibited evident retardation of virus accumulation and the greatest difference in virus content between resistant and susceptible plants was detected 9 days after inoculation. By these criteria, the selected winter and spring barley cultivars and lines (in total 44 materials) fell in to five groups according to field reactions and the presence or absence of the Yd2 resistance gene. There were highly significant and positive relations between ELISA values and 5‐year field data on symptomatic reactions and grain‐yield reductions due to infection. Using the described method, resistant and moderately resistant genotypes (both Yd2 and non‐Yd2) were significantly differentiated from susceptible genotypes. The possible use of this method in screening for BYDV resistance is discussed.  相似文献   

11.
Barleys with and without the Yd2 resistance factor, wheat alien addition stocks with other barley yellow dwarf virus (BYDV) resistance factors and true wheats were challenged with three Australian isolates of BYDV-RPV. Yd2 resistance was effective against two of the BYDV-RPV isolates and inoculated barleys which carry Yd2 did not develop BYD symptoms and shoot growth was not affected. However, barleys with Yd2 were susceptible to the third BYDV-RPV isolate. All barley lines inoculated with the third virus isolate developed typical BYD symptoms (yellowing), shoot growth was reduced compared to uninfected controls and virus titres determined by ELISA were high and similar in barleys with and without Yd2. In contrast, resistances from Thinopyrum intermedium and Agropyron pulcherrimum in wheat backgrounds were effective against all three BYDV-RPV isolates. Shoot growth of inoculated plants with either of these resistance factors did not differ from uninfected controls and virus titres determined by ELISA were very low.  相似文献   

12.
In temperate rainforests on Chiloé Island in southern Chile (42°S), most canopy trees bear fleshy, avian‐dispersed propagules, whereas emergent tree species have dry, wind‐borne propagules. In the present study, the following hypothesis was tested: regardless of species, fleshy propagules are deposited in greater numbers in canopy gaps and in forest margins and hence have a more heterogeneous seed shadow than wind‐dispersed propagules. To test this hypothesis, the seed rains of these two types of propagules were compared in the following forest habitats: (i) tree‐fall gaps (edges and centre); (ii) forest margins with adjacent pastures; and (iii) under closed canopy (forest interior). Seed collectors (30‐cm diameter) were placed in two (15 and 100 ha) remnant forest patches (n = 60–100 seed collectors per patch) distributed in the four habitats. Seeds were retrieved monthly from each collector during two reproductive seasons (1996, 1997). In both years, the seed rain was numerically dominated by two species with dry propagules (Laureliopsis philippiana and Nothofagus nitida) and three species with fleshy fruits (Drimys winteri, Amomyrtus luma, and Amomyrtus meli). The seed shadows of the two species with dry, wind‐dispersed seeds differed markedly. Seeds of L. philippiana were deposited predominantly in canopy openings, whereas N. nitida seeds fell almost entirely in the forest interior. The fleshy‐fruited species, Drimys and Amomyrtus spp., had similar seed deposition patterns in the various habitats studied, but the between‐year differences in seed rain were greater in Drimys winteri than in Amomyrtus spp. Although no more than 10% of fleshy‐fruited propagules reached the margins of the patch, approximately 7% of these were carried there by birds. Every year, canopy gaps (pooling data from edges and centres) concentrated approximately 60% of the total seed rain of both propagule types in both forest patches. Forest margins received less than 20% of the total seed rain, which was largely dominated by fleshy‐fruited species. Seed shadows were a species‐specific attribute rather than a trait associated with propagule type and dispersal mode.  相似文献   

13.
Four commonly-used cereal foliar fungicides were screened for their laboratory toxicity against the symphypleone collembolan, Sminthurinus aureus. A proportional hazards analysis of time-survival curves following the fungicide treatments showed that carbendazim, propiconazole, pyrazophos and triadimenol significantly increased the laboratory mortality of S. aureus. The organophosphorus fungicide pyrazophos caused high levels of mortality of S. aureus in the laboratory so a field evaluation of the effects of this fungicide on a wider range of Collembola was undertaken in winter barley. Comparison of the effects of pyrazophos with those of the broad-spectrum insecticide dimethoate in the field revealed both compounds to have similar activity against some Collembola. Of the 11 species caught only the four symphypleone species exhibited these effects but the numbers of three symphypleone species were reduced to zero 4 wk after treatment with pyrazophos. The effects of pyrazophos and dimethoate were, however, not detectable in individual species after 11 wk.  相似文献   

14.
A viruliferous isolate of the fungal vector Polymyxa graminis was grown on roots of barley cultivars immune or susceptible to barley yellow mosaic virus (BaYMV). Zoospores or resting spores of the vector produced on different cultivars were then inoculated to a virus-susceptible test cultivar. Although the vector established in all treatments, transmission of BaYMV was rare and usually nil from immune cultivars; amounts of virus detected serologically in their roots were very low, thus showing that resistance was to virus multiplication. If immune cultivars decrease the virus content of vector populations in the field, this would have important implications for disease control.  相似文献   

15.
An experiment in a field where sugar beet in 1965 had suffered from Docking disorder caused by Longidorus attenuatus tested the effect of fumigating the soil with 3741/ha D-D and two amounts of nitrogen fertilizer on different crop sequences between 1966 and 1969. Although severe Docking disorder did not recur in sugar beet, fumigation increased yield in each of the three following years. Yield of barley was increased for 4 yr and of wheat, potatoes and ryegrass for 1 or 2 yr after treatment. All plant parasitic nematodes were controlled by the first fumigation and the numbers of those in unfumigated plots 3 yr after treatment. Fumigation also largely prevented infection of sugar beet by the fungus Helicobasidium purpureum.  相似文献   

16.
The numbers of cereal aphids, especially Metopolophium dirhodum in 1979, and Sitobion avenae in 1980, were significantly increased on BYDV infected wheat and oats in 1979, and wheat, barley and oats in 1980. The differences were probably caused by attraction of alates of each species to virus infected plants which had changed colour as a result of their infection. Significantly more alates of M. dirhodum were found on virus infected oats in 1979, and of S. avenae on oats and barley in 1980, although not on wheat in either year. probably because the colour contrast in wheat was less intense than in the other crops. Flight chamber experiments with alates of both species confirmed their visual attraction to virus-infected leaves. The interaction between virus, vector and host plants is discussed with reference to the ecology of virus spread.  相似文献   

17.
Factorial experiments in 1976–1979 investigated the effects of sowing date, fungicides (ethirimol seed treatments and tridemorph sprays) and insecticides (phorate applied to the soil, and menazon or dimethoate sprays) on powdery mildew, aphids, barley yellow dwarf virus (BYDV) and grain yield of spring barley (cv. Julia in 1976 and 1977; cv. Wing in 1978 and 1979). Late sowing usually increased the severity of powdery mildew, numbers of aphids and incidence of BYDV and generally decreased yield. Responses to pesticides were commonly greater on the late-sown than on the early-sown barley. Response to fungicides are principally attributed to the control of powdery mildew (Erysiphe graminis f. sp. hordei; the target species) but responses to insecticides cannot be attributed to virus control and seem unlikely to be due solely to control of aphids, whose numbers were relatively small. There were some effects of fungicides on aphids and insecticides on mildew, but they were inconsistent and too small to affect crop protection strategies.  相似文献   

18.
To gain a better understanding of the mechanisms of improvement of iron nutrition of peanut (Arachis hypogaea L.) intercropped with maize (Zea mays L.) in calcareous soil, both greenhouse and field experiments were conducted to investigate the rhizosphere (phytosiderophores) effects from maize, barley, oats and wheat with different phytosiderophores release rates on iron nutrition and other micronutrients in calcareous soil. Six cropping treatments were examined in a greenhouse experiment: peanut grown separately in monoculture, normal peanut/maize intercropping (two genotypes: Danyu13, Zhongdan12), peanut/barley intercropping, peanut/oats intercropping, and peanut/wheat intercropping. Additionally, we investigated in a field experiment the same five cropping systems as the greenhouse experiment (maize/peanut intercropping not including Zhongdan12). Our results show that the chlorophyll and active Fe concentrations in the young leaves of the peanut in the intercropping system with different gramineous species were much higher than those of the peanut in monoculture. In greenhouse conditions, the Fe concentration in the shoots of peanut plants grown in the intercropping systems of two maize genotypes separately were 1.40–1.44, 1.47–1.64 and 1.15–1.42 times higher respectively than those of peanut plants grown in monocropping at 55, 60 and 70 days. In particular, the Fe concentration in shoots of peanut plants grown in the intercropping systems of barley, oats and wheat were not only higher than those in monocropping but also higher than those in peanut intercropped cropping with maize. In the field, the concentration of Fe in shoot of intercropped peanut plants in rows 1–3 from gramineous species were significantly higher than in monocropping at the flowering stage. Simultaneously with iron nutrition variation in peanut, Zn and Cu concentrations of intercropped grown peanut increased significantly compared to those in monocropping in the greenhouse experiment, and different intercropping treatments generally increased the Zn and Cu content in the shoot of peanut in the field. Systemic mechanisms may be involved in adaptation to nutrient stresses at the whole plant level. The study suggests that a reasonable intercropping system of nutrient efficient species should be considered to prevent or mitigate iron and zinc deficiency of plants in agricultural practice.  相似文献   

19.
A. Arslan  F. Kurdali 《Plant and Soil》1996,183(1):137-148
A field experiment on vetch and barley grown in monoculture and in mixed culture was conducted under rain-fed conditions throughout two growing seasons. Plants were either subjected to three sequential harvests, or were harvested only once, at physiological maturity. Our results showed the advantage of a mixed cropping system of vetch and barley over sole cropping under rainfed conditions in terms of dry matter production, total nitrogen content, and land use efficiency expressed as land equivalent ratio (LER). This advantage was more pronounced in the plants harvested once at the end of the season than those subjected to the three successive harvests. Based on this result, a single seasonal rather than several harvests would be recommended under similar rainfed conditions. Nitrogen fixation in vetch measured by the15N-isotope dilution method, varied with the number of harvests and with cropping system. The percentage of N derived from the atmosphere (%Ndfa) of vetch in mixed culture was in most cases higher than in monoculture. The poor competitiveness of vetch for soil N uptake was responsible for the higher soil N uptake by barley and therefore, a higher %Ndfa in vetch. Positive and high final nitrogen balance was observed in the mixture. We excluded, under the current experimental conditions, the possibility of N-transfer from vetch to barley.  相似文献   

20.
The restoration of the high botanical diversity of the premining jarrah (Eucalyptus marginata) forest is a major priority of rehabilitation following bauxite mining in southwestern Australia. This study investigated the effects of different ripping, seeding, and scarifying dates on the establishment of plants from propagules stored in the topsoil and from applied seed on areas being rehabilitated after mining. Seed stored in the topsoil, rather than applied seed, was the major contributor to plant diversity. Ripping late (April) or scarifying in June significantly reduced the number of species and numbers of individual plants that established from propagules in the topsoil. Species originating from broadcast seed were most numerous when the seed was broadcast in April or after scarifying in June. Scarifying before seeding, particularly in June, increased the establishment of species from the broadcast seed. To make best use of the applied seed, without jeopardizing the establishment of species from the topsoil, pits should be ripped and sown by April. We list a number of strategies that can help maximize plant numbers and botanical diversity on rehabilitated bauxite mines, which may also be of more general application for restoring the original native vegetation on disturbed sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号