首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Newly isolated Acinetobacter (NRRL B-14920, B-14921, B-14923) and coryneform (NRRL B-14922) strains accumulated oleyl oleate and homologous liquid wax esters (C30:2–C36:2) in culture broths. Diunsaturated oleyl oleate preponderated in 75 mg liquid wax esters (280 mg lipid extract) recovered from 100-ml cultures of Acinetobacter B-14920 supplemented with 810 mg oleic acid–oleyl alcohol. With soybean oil instead of oleic acid, wax esters (260 mg) were increased to approximately 50% of the lipid extract. Production of wax esters by cultures supplemented with combined fatty (C8–C18) alcohols and acids suggests a coordinated synthesis whereby the exogenous alcohol remains unaltered, and the fatty acid is partially oxidized with removal of C2 units before esterification. Consequently, C8–C18 primary alcohols control chain lengths of the wax esters. Exogenous fatty acids are presumed to enter an intracellular oxidation pool from which is produced a homologous series of liquid wax esters.  相似文献   

2.
The biosynthesis of wax esters has been investigated in maturing seeds of Sinapis alba. Exogenous long-chain alcohols are incorporated exclusively into alkyl moieties of wax esters. Oxidation of the long-chain alcohols is not detected. Exogenous fatty acids are incorporated into acyl moieties of wax esters to a low extent. A reduction of fatty acids to alcohols is not observed. Synthesis of wax esters is localized exclusively in the testa; both outer and inner integument are equally active in wax ester biosynthesis. The biosynthesis of wax esters is specific with regard to both chain length and degree of unsaturation of long-chain alcohols. Exogenous and endogenous sterols are not esterified.  相似文献   

3.
《Phytochemistry》1987,26(12):3265-3268
Seven species of fresh mangrove leaves were found to contain saturated normal and branched chain hydrocarbons, mostly between C16 and C36 with both odd and even carbon numbers. Significant quantitative variations were found between species. Wax esters were found to contain fatty acids with chain lengths between C12 and C22. Palmitic (16:0) and stearic (18:0) acids were the major component saturated fatty acids, whereas, oleic (18:1) and linolenic (18:3) acids were the major unsaturate α-acids. Chain lengths of the alcohols of wax esters were between C14 and C36. Significant quantitative and minor qualitative differences were noted in the alcohol composition of wax esters. Hydrocarbon and wax ester compositions were characterised by the presence of low M, components in high proportions.  相似文献   

4.
D.R. Body 《Phytochemistry》1974,13(8):1527-1530
The neutral lipids of white clover leaves and stems have been separated into wax esters, free fatty acids, free fatty alcohols, free sterols, triglycerides and hydrocarbons. The wax esters were mainly of C18 di- and tri-unsaturated fatty acids and C30 fatty alcohol. Linolenic acid was the predominant free fatty acid and triacontanol was the principal free fatty alcohol. Of the hydrocarbons, C29 and C31 were present in the largest amounts.  相似文献   

5.
Sodium [1-14C]acetate and [1-14C]stearic acid were readily incorporated into hydrocarbons, secondary alcohols, wax esters, aldehydes, primary alcohols, and fatty acids in young pea leaves (Pisum sativum). Dithioerythritol, dithiothreitol, and mercaptoethanol (but not glutathione and cysteine) severely inhibited the incorporation of labeled acetate into alkanes and secondary alcohols with accumulation of label in wax ester and aldehyde fractions. Detailed radio gas-chromatographic analyses of the fatty acids of both the surface lipid components and internal lipids showed that dithioerythritol and mercaptoethanol specifically inhibited n-hentriacontane (C31) synthesis and caused accumulation of C32 aldehyde, suggesting that the inhibition was at or near the terminal step in alkane biosynthesis, presumably decarboxylation. Trichloroacetate, at a concentration that inhibited C31 alkane synthesis but not the synthesis of alcohols (C26 and C28) specifically inhibited the formation of C32 aldehyde but not that of the C26 or C28 aldehyde. From these results, it is concluded that the C32 aldehyde is derived from the C32 acyl derivative which is the precursor of C31 alkane.  相似文献   

6.
Green nonsulfur-like bacteria (GNSLB) in Yellowstone hot spring microbial mats have been extensively studied and are thought to operate both as photoheterotrophs and photoautotrophs. Here we studied the occurrence and carbon metabolisms of GNSLB by analyzing the distribution and isotopic composition of their characteristic wax ester lipids in four Californian and Nevada hot spring microbial mats at a range of temperatures (37–96°C). The distribution of wax esters varied strongly with temperature. At temperatures between 50–60°C the wax ester composition in each of the four hot spring microbial mats was dominated by C30 to C36 wax esters, consisting of mixtures of C15-C18 n-alkyl and branched fatty acids and alcohols, typical for GNSLB. Stable carbon isotopic analysis showed that these wax esters were only depleted by 5 to 10‰ compared to dissolved inorganic carbon in the overlying water, suggesting that these GNSLB were mainly autotrophic. However, analysis of different depth layers of one microbial mat showed that these GNSLB wax esters were increasingly depleted in 13C with depth, suggesting that photoautotrophy mainly occurred in the top layer of the mat. 13C-depleted C36-C44 wax esters were found in one hot spring at high temperatures (77–96°C) and are likely derived from allochtonous plant waxes. At several lower temperature sites (35–40°C) the wax esters were predominantly composed of C28, C30 and C32 wax esters consisting of mixtures of C14-C16 fatty acids and n-alkanols and were depleted in 13C by 15–20‰ relative to dissolved inorganic carbon, suggesting they may be derived from heterotrophic organisms. Our results indicate that autotrophic GNSLB occur widely in hot springs and that diverse groups of organisms contribute to the pool of wax ester lipids in hot spring environments.  相似文献   

7.
Microsomal particles from dark-grown Euglena gracilis incorporated malonyl-CoA into fatty acids and fatty alcohols in the presence of acetyl-CoA, NADH, NADPH, and ATP with an optimum pH of 8.0. Schmidt degradation of the individual fatty acids derived from [l,3-14C]malonyl-CoA showed that the microsomal fatty acid synthesis was a de novo type. Detailed analysis of the products formed in the absence of various cofactors showed that the role of ATP was specifically in the formation of fatty alcohols and that fatty acid reduction specifically required NADH.The major aliphatic chains synthesized by the microsomes were C16, C18, and C14 in both the acyl portions and alcohols. Although relative concentrations of acetyl-CoA and malonyl-CoA influenced the chain length distribution of products, C16remained the major product in both the alcohol and the acid fractions. Effects of NADPH and NADH concentrations on malonyl-CoA incorporation suggested that the two reductive steps involved in the microsomal fatty acid synthesis have different pyridine nucleotide specificity. The apparent Km for malonyl-CoA was 4.2 × 10?4m. Based on the experimental results a mechanism is suggested by which carbon is channeled into wax esters under conditions of nutritional abundance in dark-grown E. gracilis.  相似文献   

8.
ABSTRACT. Euglena gracilis is able to synthesize adenosine triphosphate under anaerobic conditions through a malonyl-independent fatty acid synthesis leading to wax ester fermentation. Mitochondrial fatty acid synthesis uses acetyl-CoA and propionyl-CoA as C2- and C3-donors for de novo synthesis of even- and odd-numbered fatty acids, respectively. Euglena' s wax ester fermentation has only been described in the E. gracilis strain 1224-5/25 Z. Here we investigate eight E. gracilis strains isolated in 1932–1958 from different localities in Europe and two bleached substrains of E. gracilis 1224-5/25, obtained by treatment with streptomycin and ofloxacin, and examine their anaerobic growth, wax ester fermentation, and wax ester composition. Under ambient oxygen levels, all strains accumulated wax esters in concentrations between 0.3% and 3.5% of the dry weight, but the strains revealed marked differences in wax ester accumulation with respect to anaerobic growth. Most fermenting strains tested showed increased wax ester synthesis under anaerobic conditions as well as the increased synthesis of odd-numbered fatty acids and alcohols suggesting an activation of the mitochondrial fatty acid biosynthesis pathway. Addition of the elongase inhibitor flufenacet to the growth medium specifically reduced the accumulation of odd-numbered fatty acids and alcohols and tended to increase the overall yield of anaerobic wax esters.  相似文献   

9.
Wax esters are esters of long-chain fatty acids and long-chain fatty alcohols which are of considerable commercial importance and are produced on a scale of 3 million tons per year. The oil from the jojoba plant (Simmondsia chinensis) is the main biological source of wax esters. Although it has a multitude of potential applications, the use of jojoba oil is restricted, due to its high price. In this study, we describe the establishment of heterologous wax ester biosynthesis in a recombinant Escherichia coli strain by coexpression of a fatty alcohol-producing bifunctional acyl-coenzyme A reductase from the jojoba plant and a bacterial wax ester synthase from Acinetobacter baylyi strain ADP1, catalyzing the esterification of fatty alcohols and coenzyme A thioesters of fatty acids. In the presence of oleate, jojoba oil-like wax esters such as palmityl oleate, palmityl palmitoleate, and oleyl oleate were produced, amounting to up to ca. 1% of the cellular dry weight. In addition to wax esters, fatty acid butyl esters were unexpectedly observed in the presence of oleate. The latter could be attributed to solvent residues of 1-butanol present in the medium component, Bacto tryptone. Neutral lipids produced in recombinant E. coli were accumulated as intracytoplasmic inclusions, demonstrating that the formation and structural integrity of bacterial lipid bodies do not require specific structural proteins. This is the first report on substantial biosynthesis and accumulation of neutral lipids in E. coli, which might open new perspectives for the biotechnological production of cheap jojoba oil equivalents from inexpensive resources employing recombinant microorganisms.  相似文献   

10.
The total surface lipids, including the wax particles, of the adult whiteflies of Bemisia tabaci and Trialeurodes vaporariorum were characterized. At eclosion, there were similar amounts of long-chain hydrocarbons, aldehydes, alcohols and wax esters. Within a few hours post-eclosion, long-chain aldehydes and long-chain alcohols were the dominant surface lipid components, C34 on B. tabaci and C32 on T. vaporariorum. Hydrocarbons, mainly n-alkanes, were minor components of the surface lipids. The major wax esters were C46 on B. tabaci and C42 on T. vaporariorum. The major acid and alcohol moieties in the wax esters of B. tabaci were C20 and C26, respectively, and of T. vaporariorum were C20 and C22, respectively. Both B. tabaci and T. vaporariorum had a minor wax ester composed of the fatty acid C18:1 esterified to the major alcohols, C34 and C32, respectively. Bemisia were readily distinguished from Trialeurodes based on the composition of their wax particles and/or their wax esters; however, no differentiating surface lipid components were detected between biotypes A and B of B. tabaci.  相似文献   

11.
Wax esters, which are esters of fatty alcohols and fatty acids (FAs), are one of the main classes of reserve lipids in all coral species. The chemical structures and the content of wax ester molecular species were determined for the first time in nine coral species from three taxonomic groups: symbiotic reef-building corals, (Hexacorallia subclasses), symbiotic soft coral alcyonarians, and asymbiotic soft coral gorgonians (Octocorallia subclasses) collected in the South China Sea (Vietnam). Our comparison of these groups showed that the absence of symbiotic microalgae (zooxanthellae) and the exoskeleton affects the profile of molecular species of wax esters considerably. The main components of wax esters of all corals were cetyl palmitate (16:0-16:0) and other saturated wax esters containing 30, 34, and 36 carbon atoms. The content of unsaturated molecular species 6:0–16:1, 16:0–18:1, and 16:0–20:1 in wax esters of symbiotic soft corals (alcyonarians) was greater than that in wax esters of reef-building corals. In contrast to symbiotic coral species, wax esters of asymbiotic soft corals, namely azooxanthellate gorgonians, contained a considerable amount of long-chain molecular species (C37-C41) with an odd number of carbon atoms. The presence of such molecular species indicates that asymbiotic gorgonians may use bacterial FAs in biosynthesis of their own wax esters. This observation confirms our hypothesis that bacterial community is important for maintaining the energy balance of azooxanthellate corals.  相似文献   

12.
Epicuticular wax from mature plants of Sorghum bicolor SD-102 was compared with that from panicles and seedlings of the same variety at the fourth-fifth leaf stage of growth. The composition of wax from SD-102 panicles was quite different from that of mature leaf blades and sheaths. Free fatty alcohols were the dominant class of wax from SD-102 seedlings and C32 was the major homologue of alcohols and aldehydes. For comparison purposes, the epicuticular waxes from whole plants of two other S. bicolor varieties, Alliance A and Martin A, grown up to the tasseling stage, have been analysed. The major wax components were free fatty acids. The typical chain lengths of aldehydes, free alcohols and free fatty acids were C28 and C30.p-Hydroxybenzaldehyde was not a wax component of the studied varieties of sorghum.  相似文献   

13.
Acylation of fatty acids to hydroxy groups in cells generally require activation to a thioester (ACP or CoA) or transacylation from another oxygen ester. We now show that microsomal membranes from Arabidopsis leaves efficiently acylate free fatty acids to long chain alcohols with no activation of the fatty acids to thioesters prior to acylation. Studies of the fatty alcohol and fatty acids specificities of the reaction in membranes from Arabidopsis leaves revealed that long chain (C18-C24) unsaturated fatty alcohols and C18-C22 unsaturated fatty acids were preferred. Microsomal preparations from Arabidopsis roots and leaves and from yeast efficiently synthesized ethyl esters from ethanol and free fatty acids. This reaction also occurred without prior activation of the fatty acid to a thioester. The results presented strongly suggest that wax ester and ethyl ester formation are carried out by separate enzymes. The physiological significance of the reactions in plants is discussed in connection to suberin and cutin synthesis. The results also have implication regarding the interpretation of lipid metabolic experiments done with microsomal fraction.  相似文献   

14.
Epicuticular and intracuticular waxes from both adaxial and abaxial surfaces of the leaves of Kalanchoe daigremontiana were analyzed. All wax mixtures were found to contain approximately equal amounts of triterpenoids and very long chain fatty acid (VLCFA) derivatives. The triterpenoid fraction consisted of glutinol (8-19% of the total wax) and friedelin (4-9%), together with smaller amounts of glutanol, glutinol acetate, epifriedelanol, germanicol and β-amyrin. The VLCFA derivatives comprised C27-C35 alkanes (19-37% of the total wax), C32-C34 aldehydes (3-7%), C32 and C34 fatty acids (0.2-3%), C26-C36 primary alcohols (4-8%), and C42-C52 alkyl esters (2-9%). The wax layers were found to differ in triterpenoid amounts, with the intracuticular wax containing higher percentages of most triterpenoids than the epicuticular wax. Friedelin, the only triterpenoid ketone present, showed the opposite distribution with higher proportions in the epicuticular wax. VLCFA derivatives also accumulated to higher percentages in the epicuticular than in the intracuticular wax layer. Epicuticular wax crystals were observed on both the adaxial and abaxial leaf surfaces.  相似文献   

15.
Wax on leaves of rye and of hexaploid Triticale (60–70-day-old plants) contains hydrocarbons (6–8%), esters (10%), free alcohols (14-8%), free acids (3%), hentriacontane-14,16-dione (39–45%), 25 (S)-hydroxyhentriacontane-14,16-dione (13–11%) and unidentified (14–15%). Diesters (1–3%) are also present in rye wax. Compositions of hydrocarbons (C27-C33) and esters (C28,C58) are similar for both waxes. Free and combined alcohols of rye wax are mainly hexacosanol but alcohols of Triticale wax are mainly octacosanol. The composition of Triticale wax is close to that of its wheat parent Triticum durum (cv. Stewart 63). Esters of wax from ripe rye contain 58% of trans 2,3-unsaturated esters. *NRCC No. 14033.  相似文献   

16.
《Insect Biochemistry》1987,17(1):219-225
A series of esters of C8-C13 fatty acids formed with C10-C12 straight chain alcohols, representing 3.7% of the glandular contents, was found in the Dufour gland of workers of the formicine ant Lasius niger. Altogether, nearly 50 components, among them hydrocarbons, alcohols, acetates and propionates were identified in the glandular liquid by means of gas chromatography (GC) and mass spectrometry (MS), using a solid injection technique. The wax esters and the propionates—decyl, dodecyl, octadecyl and farnesyl—have not been previously reported from ant secretions.  相似文献   

17.
By aid of lipases, e.g. of Mucor michei, in n-hexane wax esters were produced from usual primary fatty alcohols and unusual hydroxy fatty acids (in part of microbial origin). Thus, (S)-17-hydroxyoctadecanoic acid dodecyl ester and (R)-3-hydroxy decanoic acid dodecyl ester were formed. In measurements of the film pressure using a LANGMUIR film balance the monolayers of both compounds indicated good stability compared to the non-hydroxy wax esters. Glycolipids de novo produced by microorganisms did not show suitable wetting properties, but they were able to lower ze surface tension of water to a higher extent than the unusual waxes.  相似文献   

18.
The major components (50%) of the surface lipid extract of fungal spores (5.6% of dry spore wt) of Sphaerotheca fuliginea are esters of primary alcohols and fatty acids. Esters (15%) of primary alcohols and a Δ2t acid are present. The major acid moieties of the alkyl esters are C22 and C24 and of the Δ2t alkyl ester is Δ2t C22; for both classes eicosanol is the major primary alcohol. The major ester of each class was concluded to be eicosanyl docosanoate and eicosanyl trans-2-docosenoate. Minor components are saturated and Δ2t methyl and diol diesters and free fatty acids. The major acid moieties of the diol diesters are C22 and C24 and the major diol is 1,12-dodecanediol.  相似文献   

19.
Lipid classes and fatty acid distribution were analysed in the resting sporangium of Synchytrium endobioticum, the causal agent of the potato wart disease. The sporangium contents were shown to have lipid droplets, the major fatty acids there being C16.0, C18.1, and C19.0. The sporangium wall on the other hand was composed of C18.0, C18.1, C18.2, C20.0, and C20.4 fatty acids. A significantly large portion of the sporangium wall lipids contained wax esters with branched chains.  相似文献   

20.
Heterotrophic cell suspension cultures of soya (Glycine max) and photomixotrophic cell suspension cultures of rape (Brassica napus) were incubated with cis-9-[1-14C]octadecenol for 3–48 h. It was found that under aerobic conditions large proportions of the alcohol are oxidized to oleic acid, which is incorporated predominantly into phospholipids, whereas up to 30% of the substrate is esterified to wax esters. This is true for both the heterotrophic and the photomixotrophic cell suspension cultures, but the metabolic rates are much higher in the latter. Under anaerobic conditions only small proportions of the radioactively labeled alcohol are oxidized to oleic acid, whereas a major portion of the alcohol is esterified to wax esters both in heterotrophic and photomixotrophic cultures. Incubations of homogenates of photomixotrophic rape cells with labeled cis-9-octadecenol showed that pH 6 is optimum for the formation of wax esters. This monounsaturated alcohol is preferred as a substrate over saturated longchain alcohols, whereas short-chain alcohols, cholesterol, and glycerol are not acylated. Incubations of an enzyme concentrate from a homogenate of rape cells with unlabeled cis-9-octadecenol and [1-14C]oleic acid, or [1-14C]stearoyl-CoA, or di[1-14C]palmitoyl-sn-glycero-3-phosphocholine showed that acylation of the longchain alcohol proceeds predominantly through acyl-CoA. Direct esterification of the alcohol with fatty acid as well as acyl transfer from diacylglycerophosphocholine could be demonstrated to occur to a much smaller extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号