首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background  

The DNA-dependent RNA polymerase from T7 bacteriophage (T7 RNAP) has been extensively characterized, and like other phage RNA polymerases it is highly specific for its promoter. A combined in vitro / in vivo selection method has been developed for the evolution of T7 RNA polymerases with altered promoter specificities. Large (103 – 106) polymerase libraries were made and cloned downstream of variant promoters. Those polymerase variants that can recognize variant promoters self-amplify both themselves and their attendent mRNAs in vivo. Following RT / PCR amplification in vitro, the most numerous polymerase genes are preferentially cloned and carried into subsequent rounds of selection.  相似文献   

3.

Background  

Fine tuning expression of genes is a prerequisite for the strictly human pathogen Neisseria meningitidis to survive hostile growth conditions and establish disease. Many bacterial species respond to stress by using alternative σ factors which, in complex with RNA polymerase holoenzyme, recognize specific promoter determinants. σE, encoded by rpoE (NMB2144) in meningococci, is known to be essential in mounting responses to environmental challenges in many pathogens. Here we identified genes belonging to the σE regulon of meningococci.  相似文献   

4.

Background  

In mono- and eudicotyledonous plants, a small nuclear gene family (RpoT, RNA polymerase of the T3/T7 type) encodes mitochondrial as well as chloroplast RNA polymerases homologous to the T-odd bacteriophage enzymes. RpoT genes from angiosperms are well characterized, whereas data from deeper branching plant species are limited to the moss Physcomitrella and the spikemoss Selaginella. To further elucidate the molecular evolution of the RpoT polymerases in the plant kingdom and to get more insight into the potential importance of having more than one phage-type RNA polymerase (RNAP) available, we searched for the respective genes in the basal angiosperm Nuphar advena.  相似文献   

5.

Background  

Despite of the fact that mammalian genomes are far more spacious than prokaryotic genomes, recent nucleotide sequencing data have revealed that many mammalian genes are arranged in a head-to-head orientation and separated by a small intergenic sequence. Extensive studies on some of these neighboring genes, in particular homologous gene pairs, have shown that these genes are often co-expressed in a symmetric manner and regulated by a shared promoter region. Here we report the identification of two non-homologous brain disease-related genes, with one coding for a serine protease inhibitor (SERPINI1) and the other for a programmed cell death-related gene (PDCD10), being tightly linked together by an asymmetric bidirectional promoter in an evolutionarily conserved fashion. This asymmetric bidirectional promoter, in cooperation with some cis-acting elements, is responsible for the co-regulation of the gene expression pattern as well as the tissue specificity of SERPINI1 and PDCD10.  相似文献   

6.
7.
8.

Background  

Despite extensive efforts devoted to predicting protein-coding genes in genome sequences, many bona fide genes have not been found and many existing gene models are not accurate in all sequenced eukaryote genomes. This situation is partly explained by the fact that gene prediction programs have been developed based on our incomplete understanding of gene feature information such as splicing and promoter characteristics. Additionally, full-length cDNAs of many genes and their isoforms are hard to obtain due to their low level or rare expression. In order to obtain full-length sequences of all protein-coding genes, alternative approaches are required.  相似文献   

9.
10.
11.

Background  

RNA interference coupled with videorecording of C. elegans embryos is a powerful method for identifying genes involved in cell division processes. Here we present a functional analysis of the gene B0511.9, previously identified as a candidate cell polarity gene in an RNAi videorecording screen of chromosome I embryonic lethal genes.  相似文献   

12.

Background  

Pseudouridine (Ψ) is an abundant modified nucleoside in RNA and a number of studies have shown that the presence of Ψ affects RNA structure and function. The positions of Ψ in spliceosomal small nuclear RNAs (snRNAs) have been determined for a number of species but not for the snRNAs from Caenorhabditis elegans (C. elegans), a popular experimental model system of development.  相似文献   

13.
14.
15.
16.

Background  

Nuclear genes determine the vast range of phenotypes that are responsible for the adaptive abilities of organisms in nature. Nevertheless, the evolutionary processes that generate the structures and functions of nuclear genes are only now be coming understood. The aim of our study is to isolate the alcohol dehydrogenase (Adh) genes in two distantly related legumes, and use these sequences to examine the molecular evolutionary history of this nuclear gene.  相似文献   

17.

Background  

Entamoeba histolytica is a professional phagocytic cell where the vacuolar ATPase plays a key role. This enzyme is a multisubunit complex that regulates pH in many subcellular compartments, even in those that are not measurably acidic. It participates in a wide variety of cellular processes such as endocytosis, intracellular transport and membrane fusion. The presence of a vacuolar type H+-ATPase in E. histolytica trophozoites has been inferred previously from inhibition assays of its activity, the isolation of the Ehvma1 and Ehvma3 genes, and by proteomic analysis of purified phagosomes.  相似文献   

18.

Background  

Embryo in vitro manipulations during early development are thought to increase mortality by altering the epigenetic regulation of some imprinted genes. Using a bovine interspecies model with a single nucleotide polymorphism, we assessed the imprinting status of the small nuclear ribonucleoprotein polypeptide N (SNRPN) gene in bovine embryos produced by artificial insemination (AI), in vitro culture (IVF) and somatic cell nuclear transfer (SCNT) and correlated allelic expression with the DNA methylation patterns of a differentially methylated region (DMR) located on the SNRPN promoter.  相似文献   

19.

Aims

To determine whether the carotenoid production improves stress tolerance of lactic acid bacteria, the cloned enterococcal carotenoid biosynthesis genes were expressed in Lactococcus lactis ssp. cremoris MG1363, and the survival rate of carotenoid‐producing engineered MG1363 strain under stress condition was investigated.

Methods and Results

We cloned carotenoid biosynthesis genes from yellow‐pigmented Enterococcus gilvus. The cloned genes consisted of crtN and crtM and its promoter region were inserted into the shuttle vector pRH100, and the resulting plasmid was named pRC. The cloned crtNM was expressed using pRC in noncarotenoid‐producing L. lactis ssp. cremoris MG1363. The expression of crtNM led to the production of C30 carotenoid 4,4′‐diaponeurosporene. After exposure to 32 mmol l?1 H2O2, low pH (1.5, acidified with HCl), 20% bile acid and 12 mg ml?1 lysozyme, the survival rates of the MG1363 strain harbouring pRC were 18.7‐, 6.8‐, 8.8‐ and 4.4‐fold higher, respectively, than those of MG1363 strain harbouring the empty vector pRH100.

Conclusions

The expression of carotenoid biosynthesis genes from Ent. gilvus improves the multistress tolerance of L. lactis.

Significance and Impact of the study

First report of the improvement of multistress tolerance of lactic acid bacteria by the introduction of genes for carotenoid production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号