首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D Egert  H Maass 《Steroids》1975,26(6):731-747
Incubations of rat uterine segments with varying 3H-progesterone concentrations were performed to study the hormone uptake by the tissue. The radioactivity of the uterus and the nutrient medium were plotted in form of a SCATCHARD plot. Additionally, the binding capacity of the uterine cytosol was measured. In both systems, the hormone was found to be associated with two components which differ from each other in their association constants. The progesterone metabolism occuring at a hormone concentration of 10(-6)M and more in the incubation medium is discussed with respect to the affinity and the capacity of the hormone binding components.  相似文献   

2.
D Egert 《Steroids》1978,31(2):269-287
The effect of estrogen pretreatment was stud-ed on the in vitro metabolism and binding of progesterone in uteri of ovariectomized rats in order to prove the dependence of the metabolism of progesterone on its binding. For this purpose, the extent of progesterone binding was varied in uterine tissue by different estrogen treatment of the rats and compared with the metabolism under the same conditions. The protein content determined in 100 mg tissue was used as parameter indicating the success of the pretreatment. Estrogen exposure of the rats for 30 or 45 hrs. caused a rise of protein amount in uterine tissue which was accompanied by an increase of binding sites of progesterone binding components. The binding sites were determined by charcoal adsorption technique and SCATCHARD-analysis. Under nearly the same success of estrogen pretreatment, the increase of the portein amount and with it the rise of binding sites reduced the amount of progesterone metabolites in uterine tissue. The metabolites were determined by quantitative TLC-analysis of the recovered compounds from uterine segments after incubation with radioactive progesterone. Additionally, an enlarged metabolic rate could be observed after saturation of binding components. It is concluded from the results of these experiments that progesterone binding components are factors limiting the enzymatic conversion of progesterone in rat uterus.  相似文献   

3.
D Egert 《Steroids》1979,33(2):139-152
Recently the in vitro progesterone metabolism was shown to be inhibited in uterine tissue by association of the hormone with binding components. However, a dissociation of progesterone would impair the protection of the steroid hormone caused by complex formation. In order to study this effect, the influence of time was investigated on the metabolism of progesterone. Progesterone metabolites were analysed quantitatively from the recovered material of uteri and nutrient media by thin layer chromatography (TLC) at various time invervals. After finishing the incubation with the labelled steroid, the amount of progesterone metabolites produced increased continuously in the tissue during the following hour when the uteri were kept in nutrient medium. This indicated that the dissociation of progesterone from a hormone protein complex led to the subsequent metabolism of the unbound hormone. However, the metabolism was reduced markedly by an increase of the protein content in uterine tissue and with it by an increase of progesterone binding proteins in uterine cytosol as determined by charcoal adsorption technique. Additionally, the amount of progesterone metabolites was found to be much higher in uterine tissue than that released into nutrient medium during the time interval studied. Therefore, uterine tissue concentrates progesterone metabolites, and a rapid turnover of these substances does not occur.  相似文献   

4.
Dibutyryl cyclic AMP markedly increases the ability of progesterone to prevent the expression of collagenase activity in cultures of post-partum rat uterus. Dibutyryl cyclic AMP itself and, to a lesser extent, native cyclic AMP, are capable of producing a partial decrease in enzyme activity, but complete abolition is not observed at high cyclic nucleotide concentrations (5 mM) in the culture medium. Theophylline, when added to cultures, mimics the effect of dibutyryl cyclic AMP. Other cyclic nucleotides were without effect on levels of collagenase activity in the uterine cultures.When non-inhibitory concentrations of either dibutyryl cyclic AMP (1 · 10?4 M) or theophylline (1 · 10?4 M) are added to cultures together with a non-inhibitory concentration of either progesterone (5 · 10?6 M) or the potent progesterone analogue Provera (1 · 10?8 M) the ability of the tissue to produce collagenase is decreased by 40–70%. Collagenase activity is consistently diminished more than additively by combinations of steroid and cyclic nucleotide. Theophylline mimics the effect of dibutyryl cyclic AMP on steroid activity in culture. In the presence of dibutyryl cyclic AMP, diminution of collagenase activity can be observed at concentrations of steroid more than two orders of magnitude lower than the normal minimally inhibitory dose. Reduction of collagenase activity is reflected in all experiments by a concomitant decrease in the normal proteolytic degradation of collagen in the tissue ex-plants. The possibility that progesterone acts in the uterus to raise cyclic AMP levels is suggested by the fact that uterine tissue, when cultured in the presence of progesterone, contains reduced levels of cyclic nucleotide phosphodiesterase.These data suggest that, in some way a cyclic AMP-mediated system is critically involved in the control of collagenase activity by progesterone in the rat uterus.  相似文献   

5.
Cytosolic and nuclear progesterone receptors (PRc and PRn) under antiprogestin treatment were measured in rat deciduoma and compared with values for contralateral (nondeciduomatous) rat uterine tissue. Uterine PRc and PRn of the progesterone treated group were 101 +/- 8.7 and 4770 +/- 590 fmol/mg DNA respectively. After treatment with antiprogestins STS-557, 5 alpha-DNE, (5 alpha-dihydronorethisterone), 5 alpha-DNG (5 alpha-dihydronorgestrel), RU-22092 and RU-16556, PRc in the nondeciduomatous control horn ranged from 127 to 377 fmol/mg DNA and PRn from 2785 to 17925 fmol/mg DNA. In the decidual tissue, PRc decreased significantly (4.6 +/- 0.8 fmol/mg DNA) on 5 alpha-DNG treatment as compared with the progesterone alone treatment group (147 +/- 3.8). PRn in decidual tissue also decreased maximally on 5 alpha-DNG treatment. These results suggest that the interaction of antiprogestins may not be identical in control uterine tissue and in deciduoma.  相似文献   

6.
Progesterone and several progesterone metabolites are capable of inhibiting uterine contractility. Some progesterone metabolites have shown little or no affinity for the progesterone receptor but have been found to be potent modulators of the GABAA receptor system. This study examined whether the inhibition of uterine contraction by progesterone and its metabolites was progesterone receptor-mediated or gamma amino butyric acidA (GABAA) receptor-mediated. Uterine contractions were measured in annular rings of uterine tissue, 5 mm in length, from diestrous II rats, under a fixed tension of 1 gram. The steroids tested were 3 beta-hydroxy-5 beta-pregnan-20-one (6 micrograms/ml), 5 beta-pregnane-3,20-dione (10 micrograms/ml), 3 alpha-hydroxy-5 alpha-pregnan- 20-one (3 alpha,5 alpha-THP, 27.5 micrograms/ml), and progesterone (40 micrograms/ml). All compounds significantly inhibited spontaneous uterine contractions when compared to controls. No effect was seen by either 16 micrograms/ml of the progesterone antagonist, RU486, or 32 micrograms/ml of the GABAA antagonist, pictrotoxin, when administered alone. However, when uterine tissues were exposed to a combination of the steroid and the antagonist, the effect of 3 beta-hydroxy-5 beta-pregnan-20-one and 3 alpha,5 alpha-THP was blocked by picrotoxin but not by RU486, indicating that the action of these steroids was mediated through the GABAA system. The effect of 5 beta-pregnane-3,20-dione and progesterone was effectively blocked by RU486 but not by picrotoxin, suggesting that their actions were mediated through the progesterone receptor system. These results indicate that multiple mechanisms exist in the uterus for inhibiting uterine contractility by progesterone and its metabolites.  相似文献   

7.
Human endometrial and myometrial tissue pieces were incubated with radioactively labeled progesterone in nutrient medium for 20 min., 1 hr and 2 hrs. The only compound extracted from the tissue pieces and the nutrient fluids was identified to be progesterone by TLC, chemical reactions and crystallization experiments. Radiometabolites could not be detected in the tissue pieces and in the nutrient fluids under the experimental conditions applied ( 10?7 M 1,2-3H-progesterone in the incubation medium). This result is comparable with recent findings on the in vitro progesterone metabolism by rat uterine tissue.  相似文献   

8.
Multiparous dairy cows were sampled to study the concentrations of progesterone in tissue of the uterus and associated vasculature and to determine whether progesterone was delivered to the uterus locally. In study 1, progesterone was greater (p less than or equal to 0.05) in the first venous branch draining the cranial portion of the uterine cornu adjacent to the vary with a corpus luteum than in jugular blood or in the same vein draining the opposite uterine cornu on day 11 postestrus. Concentrations of progesterone were also greater (p less than or equal to 0.05) in the cranial than in the caudal half of the uterine cornu adjacent to the luteal-bearing ovary or in the cranial and caudal halves of the opposite uterine cornu. Concentrations of progesterone were also greater (p less than or equal to 0.05) in the uterine or ovarian arterial tissue adjacent to the ovary with the corpus luteum than in those same vessels on the contralateral side. In a second study, progesterone at 0 h on day 11 postestrus was greater (p less than or equal to 0.05) in the first venous branch draining the cranial portion of the uterine horn adjacent to the luteal-bearing ovary than in jugular blood, the same vein in the contralateral uterine cornu or in the same uterine vein 48 h after ligation and resection of the oviductal vein adjacent to the ovary with the corpus luteum. It is concluded that progesterone is delivered locally to the uterus and associated vasculature and the route of local delivery appears to be via the oviductal vein.  相似文献   

9.
The appropriate conditions for the measurement of ovine uterine cytoplasmic progesterone receptors (PR) have been determined to be 20 nM 3H-progesterone (3H-P4) with and without a 100-fold excess of non-radioactive progesterone (P4) 0–4°C and 4 h of incubation. Under these conditions PR readily exchanged bound progesterone for progesterone added during the assay. This exchange occurred even when saturating concentrations of P4 were present. The progestins, R5020 and P4, effectively competed for the ovine uterine PR binding while non-progestin steroids and diethylstilbestrol failed to compete for the PR binding. The dissociation constant (Kd) measured for the 3H-P4 binding was 1.60 × 10?9 M indicating that the 3H-P4 binding was of high affinity. The levels of PR and the dissociation constant measured using 3H-R5020 in place of 3H-P4 were similar indicating a lack of corticosteroid binding globulin (CBG)-like binding in the ovine uterus.  相似文献   

10.
The in vitro metabolism of progesterone was studied in uteri of untreated and estrogen stimulated immature rats. In intact uteri the rate of metabolism varied with the hormonal status of the animal in a concentration dependent manner. At a low (3 × 10?9M) progesterone concentration the rate of ring A reduction was decreased in estrogen stimulated uteri. At a high progesterone concentration (3 × 10?6M) the rate of ring A reduction was increased after estrogen treatment. The rate of reduction of the C20 ketone was increased after estrogen treatment at all concentrations of incubated progesterone. In dilute homogenates of uterus, estrogen stimulation always increased the rate of progesterone metabolism.Estrogen stimulation results in increased concentration of progesterone receptor in the uterus. It is proposed that increased activity of ring A reductases also occurs. The relative influence of these two factors on the metabolism of progesterone is dependent on the progesterone concentration in the incubation medium.  相似文献   

11.
A study of the subcellular distribution of radioactivity in rat uterus after injection of labelled corticosterone showed that the radioactivity was observed in all fractions from 5 min. to 120 min. A maximum uptake was observed 10 min. after application of the labelled steroid. Competitive uptake of radioactive progesterone and unlabelled corticosterone was assayed 10 min. after injection of the hormone mixture. The ratio between radioactive progesterone and unlabelled corticosterone was 1 : 1 and 1 : 2 (moles:moles), respectively. Compared with control experiments with rats which had received radioactive progesterone alone, the results gave evidence that progesterone found in all subcellular fractions and in the total homogenate was not depressed by unlabelled corticosterone. However, unlabelled progesterone reduced the tritiated progesterone in uterine tissue. This observation demonstrates that the uptake of progesterone by rat uterus is specific.  相似文献   

12.
After injection of radioactively labelled Cortisol, the distribution of the radioactivity in the subcellular fractions of the rat uterus (nuclei, mitochondria, microsomes and 105 000 × g supernatant) was studied. In all fractions, radioactivity was observed and maxima were found 10, 20 and 50 min. after injection of the labelled hormone. Radioactivity was measured in all subcellular fractions even 180 min. after application of labelled cortisol. Additionally, radiolabelled progesterone and unlabelled cortisol in the ratio 1:1 or 1:2 (moles:moles) were injected into the animals. Studying the uptake of labelled progesterone in the subcellular fractions of the uterine tissue, revealed that no competition of unlabelled cortisol could be observed 10, 20 and 50 min. after application of the hormone mixture, compared with the control experiments. The results of this study give evidence that the progesterone uptake into rat uterus is specific and cannot be influenced by unlabelled cortisol.  相似文献   

13.
The effect of undernutrition on ovarian and uterine venous progesterone concentrations and endometrial progesterone content on Days 5 and 10 of the estrous cycle were studied. Forty ewes were synchronized using progestagen pessaries. At pessary withdrawal, the ewes were fed diets to provide either 1.5 or 0.5 times the daily maintenance requirement (Group H, n = 20 and Group L, n = 20, respectively). Ewes fed the low nutrition diet (Group L) had higher mean peripheral progesterone concentrations than those fed the high plane diet (Group H; P < 0.05) but lower endometrial progesterone content on Day 5 (P < 0.05). Neither ovarian nor uterine venous levels were affected by nutrition on either Day 5 or 10. Progesterone concentrations in blood samples collected ipsilateral to ovaries bearing a corpus luteum (CL) were higher than in the contralateral samples (P < 0.001). It is concluded that undernutrition can produce a reduction of endometrial content of progesterone the first week after mating. Since no differences in ovarian venous concentrations were observed, it remains to be shown whether this variation is due to other variables, such as the population of endometrial progesterone receptors or other nonhormonal factors.  相似文献   

14.
Ovariectomized rabbits from different breeders were treated at different times of the year with prolactin alone or with progesterone and the production of uteroglobin by the uterus was studied. There were seasonal, strain and dose variables in the uterine response to prolactin and progesterone. Treatment with prolactin (at 1 mg/day) plus progesterone generally induced higher levels of uteroglobin production than did treatment with progesterone alone. The differences were greatest in the winter for Tennessee animals and in the spring for animals from the New Mexico and North Carolina colonies. Ovariectomy produced a decrease (P less than 0.01) in the concentration of cytosolic oestrogen and progesterone receptors, and prolactin treatment restored the concentration to oestrous control values. However, there were no seasonally dependent changes in the concentration of the receptors for any of the treatment groups. Increased doses of prolactin (2 mg/day) induced high levels of uteroglobin production and new proteins to appear in uterine secretions of long-term ovariectomized rabbits but much lower levels (10-11%) when given to pregnant does. Additional ovulations were also noted plus adverse effects on the embryos.  相似文献   

15.
The in vitro and in vivo metabolism of 1,2- 3H-progesterone was studied in estrogen-stimulated and control vaginae of ovariectomized mice. Employing two-dimensional thin-layer chromatography, gas-liquid chromatography and metabolite “trapping” techniques, the major and minor pathways for progesterone metabolism were determined in vitro and shown to involve saturation of the Δ4-double bond to yield 5α-pregnane compounds and reduction of the C20 and C3 ketone groups to form 20α- and 3α- and 3β-hydroxy derivatives, respectively. The quantities of 20β-hydroxy metabolites and 5β-epimers that were detected were considered not to be significant. The major metabolites formed by untreated tissues following in vitro incubation in the presence of both high (10?6M) and low (10?8M) progesterone concentrations were 3α-hydroxy-5α-pregnan-20-one and 5α-pregnane-3,20-dione. Although these two derivatives were also found in sizable quantities in estrogen-treated tissues, a marked increase (5-fold) in the rate of C20 ketone reduction at high progesterone concentrations (10?6M) to yield 20α-hydroxy-4-pregnen-3-one was demonstrated. Following intravaginal administration of 3H-progesterone in vivo, only progesterone and 3α-hydroxy-5α-pregnan-20-one were retained in appreciable quantities through 2 hr, suggesting rapid loss of 20α-hydroxy-4-pregnen-3-one and the 5α-pregnanediols from this tissue under in vivo conditions.  相似文献   

16.
Calcitonin gene-related peptide (CGRP) is a potent smooth muscle relaxant in a variety of tissues. We recently demonstrated that CGRP relaxes uterine tissue during pregnancy but not during labor. In the present study we examined whether uterine (125)I-CGRP binding and immunoreactive CGRP receptors are regulated by pregnancy and labor and by sex steroid hormones. We found that (125)I-CGRP binding to membrane preparations from uteri was elevated during pregnancy and decreased during labor and postpartum. Changes in immunoreactive CGRP receptors were similar to the changes in (125)I-CGRP binding in these tissues, suggesting pregnancy-dependent regulation of CGRP receptor protein. CGRP receptors were elevated by Day 7 of gestation, and a precipitous decrease in these receptors occurred on Day 22 of gestation prior to the onset of labor. Both (125)I-CGRP-binding and immunofluorescence studies indicated that CGRP receptors were localized to myometrial cells. Hormonal control of uterine CGRP receptors was assessed by the use of antiprogesterone RU-486, progesterone, and estradiol-17beta. RU-486 induced a decrease in uterine CGRP receptors during pregnancy (Day 19). On the other hand, progesterone prevented the fall in uterine CGRP receptors at term (Day 22). In addition, progesterone also increased uterine CGRP receptors in nonpregnant, ovariectomized rats, while estradiol had no effects. These hormone-induced changes in uterine CGRP receptors were demonstrated by (125)I-CGRP-binding, Western immunoblotting, and immunolocalization methods. These results indicate that CGRP receptors and CGRP binding in the rat uterus are increased with pregnancy and decreased at term. These receptors are localized to the myometrial cells, and progesterone is required for maintaining CGRP receptors in the rat uterus. Thus, the inhibitory effects of CGRP on uterine contractility are mediated through the changes in CGRP receptors and may play a role in uterine quiescence during pregnancy.  相似文献   

17.
Guinea pig and rabbit uterine nuclei bound [3H] progesterone in vitro only in the presence of cytosol from estrogen-stimulated uteri. Nuclei from unstimulated and estrogen-stimulated uteri bound progesterone equally well. Nuclei of nontarget tissues also bound progesterone, but to a lesser extent. The rate of nuclear bindins increased with temperature from 0-30 degrees. At 25 degrees nuclear binding remained stable for at least 3 h, but at temperatures of 30 degrees and greater, nuclear binding decreased rapidly after 15 min. Activation of the progesterone-cytoplasmic receptor complex (the change in the complex that enables it to bind quickly to nuclei at 0 degrees) took place slowly at temperatures from 0-5 degrees and rapidly at 10-25 degrees. Activation was facilitated by dilution of the cytosol. Some activation occurred in diluted cytosol in the absence of added progesterone. The cytoplasmic progesterone receptor had a sedimentation coefficient of 7 S when concentrated cytosol (20 mg of protein/ml) was incubated with progesterone at 0 degrees in 5 mM phosphate buffer. Diluting the cytosol and increasing the temperature to 20 degrees caused the sedimentation coefficient to decrease to 5.5 S. Gel filtration of guinea pig uterine cytosol on Sephadex G-100, in the absence of progesterone, yielded a progesterone-binding fraction in the void volume, with a sedimentation coefficient of 5.5 S. The complex of progesterone with the material in the void volume was taken up by nuclei at 0 degrees more rapidly than the complex of progesterone and crude cytosol. The nuclear uptake of progesterone was decreased in phosphate buffer of concentrations greater than 80 mM. Under conditions that favor the nuclear binding of progesterone, the sedimentation coefficient of the cytoplasmic progesterone receptor was 5.5 S. This may be the form of the preceptor which is taken up by nuclei. In decreasing order of effectiveness, unlabeled progesterone, 5 alpha-pregnane-3,20-dione, corticosterone 20 alpha-hydroxy-4-pregnen-3-one, testosterone, estradiol-17 beta, and cortisol competed with [3H] progesterone for binding to nuclei.  相似文献   

18.
The objective of this study was to determine whether uterine stromal and/or epithelial progesterone receptor (PR) is required for the antagonism by progesterone (P(4)) of estradiol-17beta (E(2)) action on expression of PR and lactoferrin in uterine epithelium. Uterine tissue recombinants were prepared with epithelium (E) and stroma (S) from wild-type (wt) and PR knockout (PRKO) mice: wt-S+wt-E and PRKO-S+wt-E. P(4) action on epithelial PR expression was studied in wt-S+wt-E and PRKO-S+wt-E tissue recombinants. E(2) down-regulated epithelial PR in both types of tissue recombinants, but P(4) blocked E(2)-induced down-regulation of epithelial PR only in wt-S+wt-E tissue recombinants. Thus, P(4) requires stromal PR to inhibit E(2)-induced down-regulation of epithelial PR. Epithelial PR is not sufficient in itself. The inhibitory effect of P(4) on lactoferrin expression was studied in 4 types of tissue recombinants (wt-S+wt-E, PRKO-S+wt-E, wt-S+PRKO-E, and PRKO-S+PRKO-E). E(2) induced lactoferrin in all 4 types of tissue recombinants. P(4) blocked E(2)-induced lactoferrin expression only in wt-S+wt-E tissue recombinants. In wt-S+PRKO-E tissue recombinants, P(4) inhibited lactoferrin expression only partially. P(4) failed to block E(2)-induced lactoferrin expression in PRKO-S+wt-E and PRKO-S+PRKO-E tissue recombinants. Thus, both epithelial and stromal PR are essential for full P(4) inhibition of E(2)-induced lactoferrin expression.  相似文献   

19.
We obtained uterine and peripheral venous plasma, and samples of luteal and placental tissues from 2- to 7-year-old, Eurasian mountain reindeer (Rangifer tarandus tarandus) from a free-living, semi-domesticated herd in northern Norway in November 1995, and February and March 1996. In November, ovarian venous blood was also collected from four animals. Plasma samples were assayed for progesterone and oestradiol. The tissue samples were examined by light and electron microscopy, steroid dehydrogenase histochemistry, and northern blot analysis for RNAs for 3beta-hydroxy-steroid dehydrogenase (3beta-HSD) and P450 (side chain cleavage (scc)). Peripheral blood was taken from non-pregnant females in the same herd on the same dates. Peripheral progesterone concentrations in pregnant reindeer (3.4 +/- 0.5 ng/ml, n = 8) clearly exceeded those in non-pregnant animals (0.40 +/- 0.14 ng/ml; P < 0.0004 , n = 10) but oestradiol levels were only marginally higher in pregnant (6.0 +/- 0.7 pg/ml) than in non-pregnant (4.8 +/- 0.5 pg/ml; P = 0.35) reindeer at the stages examined. In pregnant animals, peripheral progesterone and oestradiol concentrations rose slightly between November and March but the differences did not reach significance (progesterone, P = 0.083; oestradiol, P = 0.061). In November, progesterone concentrations in the ovarian vein (79 +/- 15 ng/ml) greatly exceeded (P < 0.03) those in the uterine vein ( 10 +/- 4 ng/ml) which in turn exceeded the levels in the peripheral blood (2.8 +/- 0.4 ng/ml; P < 0.29). Oestradiol concentrations were slightly but significantly (P < 0.05) higher in the ovarian (20 +/- 3 pg/ml) than the uterine vein (13 +/- 1 pg/ml) and, in turn, greater (P < 0.03) than in peripheral blood (4.6 +/- 0.4 pg/ml). All samples of luteal tissue consisted exclusively of normal fully-differentiated cells and stained intensely for 3beta-HSD. Isolated groups of placental cells also stained strongly for 3beta-HSD. RNA for P450 (scc) and 3beta-HSD was abundant in all corpora lutea and lower concentrations of P450 (scc) were present in the placenta. 3beta-HSD RNA in the placenta was below the limit of detection. We conclude that the corpus luteum remains an important source of progesterone throughout pregnancy in reindeer but that the placenta is also steroidogenic.  相似文献   

20.
Rats treated with a single dose of 17 beta-estradiol or progesterone within 24 h of birth were subjected to ovariectomy at 8 weeks of age and were nine days later examined for the binding capacity of the uterine estradiol receptors by saturation and competition tests (with diethylstilbestrol used as competitor). The Bmax value of the neonatally estradiol-treated rats (6.78 x 10(-10) M) was significantly decreased relative to the control (1.99 x 10(-9) M). The competition analysis affirmed these results. Neonatal progesterone treatment also accounted for a significant decrease (1.25 x 10(-9) M) in receptor concentration relative to the control (1.66 x 10(-9) M). Considering the competition analysis the decrease was less than in the case of estradiol and not even significant by saturation analysis. The uterine mass did not differ between the experimental and control rats, but part of those treated with estradiol developed ovarian cysts. It follows that not only synthetic steroids (DES, allylestrenol), but also an excessive presence of the physiological steroid hormone during the critical period of receptor maturation can account for a decrease in uterine receptor concentration in adulthood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号