首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Two sodium-dependent vitamin C transporter isoforms (SVCT1 and SVCT2) were identified as ascorbic acid transporters, but their roles in skin have, as yet, not been elucidated. Here we analyze the expression and function of SVCTs in healthy human skin cells and skin tissues, and in UVB-induced cutaneous tissue injury. SVCT1 was primarily found in the epidermis expressed by keratinocytes, whereas SVCT2 expression was in the epidermis and dermis in keratinocytes, fibroblasts, and endothelial cells. Uptake experiments revealed that ascorbic acid affinity of SVCT1 was lower than SVCT2 (K(m)=75 muM and K(m)=44 muM, respectively), but maximal velocity was 9-times higher (36 nmol/min/well). In keratinocytes, SVCT1 was found to be responsible for vitamin C transport, although SVCT2 gene expression was higher. On UVB irradiation, SVCT1 mRNA expression in murine skin declined significantly in a time- and dose-dependent manner, whereas SVCT2 mRNA levels were unchanged. Furthermore, UVB irradiation of keratinocytes in vitro was accompanied by reduced ascorbic acid transport. In summary, these data indicate that the two vitamin C transporter isoforms fulfill specific functions in skin: SVCT1 is responsible for epidermal ascorbic acid supply, whereas SVCT2 mainly facilitates ascorbic acid transport in the dermal compartment. UVB-induced oxidative stress in mice resulted in depletion of SVCT1 mRNA levels and led to significantly decreased ascorbic acid uptake in keratinocytes, providing evidence on why ascorbic acid levels are decreased on UVB irradiation in vivo.  相似文献   

4.
Although there is in vivo evidence suggesting a role for glutathione in the metabolism and tissue distribution of vitamin C, no connection with the vitamin C transport systems has been reported. We show here that disruption of glutathione metabolism with buthionine-(S,R)-sulfoximine (BSO) produced a sustained blockade of ascorbic acid transport in rat hepatocytes and rat hepatoma cells. Rat hepatocytes expressed the Na(+)-coupled ascorbic acid transporter-1 (SVCT1), while hepatoma cells expressed the transporters SVCT1 and SVCT2. BSO-treated rat hepatoma cells showed a two order of magnitude decrease in SVCT1 and SVCT2 mRNA levels, undetectable SVCT1 and SVCT2 protein expression, and lacked the capacity to transport ascorbic acid, effects that were fully reversible on glutathione repletion. Interestingly, although SVCT1 mRNA levels remained unchanged in rat hepatocytes made glutathione deficient by in vivo BSO treatment, SVCT1 protein was absent from the plasma membrane and the cells lacked the capacity to transport ascorbic acid. The specificity of the BSO treatment was indicated by the finding that transport of oxidized vitamin C (dehydroascorbic acid) and glucose transporter expression were unaffected by BSO treatment. Moreover, glutathione depletion failed to affect ascorbic acid transport, and SVCT1 and SVCT2 expression in human hepatoma cells. Therefore, our data indicate an essential role for glutathione in controlling vitamin C metabolism in rat hepatocytes and rat hepatoma cells, two cell types capable of synthesizing ascorbic acid, by regulating the expression and subcellular localization of the transporters involved in the acquisition of ascorbic acid from extracellular sources, an effect not observed in human cells incapable of synthesizing ascorbic acid.  相似文献   

5.
In this article, we focus on the fundamental role of vitamin C transporters for the normal delivery of vitamin C to germ cells in the adluminal compartment of seminiferous tubules. We argue that the redox status within spermatozoa or in semen is partly responsible for the etiology of infertility. In this context, antioxidant defence plays a critical role in male fertility. Vitamin C, a micronutrient required for a wide variety of metabolic functions, has long been associated with male reproduction. Two systems for vitamin C transport have been described in mammals. Facilitative hexose transporters (GLUTs), with 14 known isoforms to date, GLUT1-GLUT14, transport the oxidized form of vitamin C (dehydroascorbic acid) into the cells. Sodium ascorbic acid co-transporters (SVCTs), SVCT1 and SVCT2 transport the reduced form of vitamin C (ascorbic acid). Sertoli cells control germ cell proliferation and differentiation through cell-cell communication and form the blood-testis barrier. Because the blood-testis barrier limits direct access of molecules from the plasma into the adluminal compartment of the seminiferous tubule, one important question is the method by which germ cells obtain vitamin C. Some interesting results have thrown light on this matter. Expression of SVCT2 and some isoforms of GLUT transporters in the testis have previously been described. Our group has demonstrated that Sertoli cells express functionally active vitamin C transporters. Kinetic characteristics were described for both transport systems (SVCT and GLUT systems). Sertoli cells are able to transport both forms of vitamin C. These findings are extremely relevant, because Sertoli cells may control the amount of vitamin C in the adluminal compartment, as well as regulating the availability of this metabolite throughout spermatogenesis.  相似文献   

6.
Kinetic analysis of vitamin C uptake has demonstrated that specialized cells take up ascorbic acid (AA), the reduced form of vitamin C, through sodium‐AA cotransporters. Recently, two different isoforms of sodium‐vitamin C cotransporters (SVCT 1, 2) that mediate high affinity Na+‐dependent l ‐ascorbic acid have been cloned. SVCT2 was detected mainly in choroid plexus cells and neurons, however, there are no evidences of SVCT2 expression in glial cells. High concentrations of vitamin C has been demonstrated in brain hypothalamic area. The hypothalamic glial cells, known as alpha and beta tanycytes, are specialized ependymal cells that bridge the cerebrospinal fluid and the portal blood of the median eminence. Our hypothesis postulates that tanycytes take up reduced vitamin C from the portal blood and cerebrospinal fluid generating an high concentration of this vitamin in brain hypothalamic area. In situ immunohistochemical analyses demonstrated that SVCT2 transporter is selectively expressed in apical region of tanycytes. A newly developed primary culture of mouse hypothalamic tanycytes was used to confirm the expression and function of SVCT2 isoform in these cells. Reduced vitamin C uptake was temperature and sodium dependent. Kinetic analysis showed an apparent Km of 20 μm and a Vmax of 45 pmol/min per million cells for the transport of ascorbic acid. The expression of SVCT2 was confirmed by immunoblots and RT–PCR. Tanycytes may perform a neuroprotective role concentrating the vitamin C in the hypothalamic area. Acknowledgements: Supported by Grands FONDECYT 1010843 and DIUC‐GIA 201.034.006‐1.4 from Concepción University.  相似文献   

7.
8.
Kinetic analysis of vitamin C uptake has demonstrated that specialized cells take up ascorbic acid (AA), the reduced form of vitamin C, through sodium-AA cotransporters. Recently, two different isoforms of sodium-vitamin C cotransporters (SVCT 1, 2) that mediate high affinity Na+-dependent l -ascorbic acid have been cloned. SVCT2 was detected mainly in choroid plexus cells and neurons, however, there are no evidences of SVCT2 expression in glial cells. High concentrations of vitamin C has been demonstrated in brain hypothalamic area. The hypothalamic glial cells, known as alpha and beta tanycytes, are specialized ependymal cells that bridge the cerebrospinal fluid and the portal blood of the median eminence. Our hypothesis postulates that tanycytes take up reduced vitamin C from the portal blood and cerebrospinal fluid generating an high concentration of this vitamin in brain hypothalamic area. In situ immunohistochemical analyses demonstrated that SVCT2 transporter is selectively expressed in apical region of tanycytes. A newly developed primary culture of mouse hypothalamic tanycytes was used to confirm the expression and function of SVCT2 isoform in these cells. Reduced vitamin C uptake was temperature and sodium dependent. Kinetic analysis showed an apparent Km of 20 μ m and a Vmax of 45 pmol/min per million cells for the transport of ascorbic acid. The expression of SVCT2 was confirmed by immunoblots and RT–PCR. Tanycytes may perform a neuroprotective role concentrating the vitamin C in the hypothalamic area.
Acknowledgements:   Supported by Grands FONDECYT 1010843 and DIUC-GIA 201.034.006-1.4 from Concepción University.  相似文献   

9.
Vitamin C is essential for many enzymatic reactions and also acts as a free radical scavenger. Specific non-overlapping transport proteins mediate the transport of the oxidized form of vitamin C, dehydroascorbic acid, and the reduced form, L-ascorbic acid, across biological membranes. Dehydroascorbic acid uptake is via the facilitated-diffusion glucose transporters, GLUT 1, 3 and 4, but under physiological conditions these transporters are unlikely to play a major role in the uptake of vitamin C due to the high concentrations of glucose that will effectively block influx. L-ascorbic acid enters cells via Na+-dependent systems, and two isoforms of these transporters (SVCT1 and SVCT2) have recently been cloned from humans and rats. Transport by both isoforms is stereospecific, with a pH optimum of approximately 7.5 and a Na+:ascorbic acid stoichiometry of 2:1. SVCT2 may exhibit a higher affinity for ascorbic acid than SVCT1 but with a lower maximum velocity. SVCT1 and SVCT2 are predicted to have 12 transmembrane domains, but they share no structural homology with other Na+ co-transporters. Potential sites for phosphorylation by protein kinase C exist on the cytoplasmic surface of both proteins, with an additional protein kinase A site in SVCT1. The two isoforms also differ in their tissue distribution: SVCT1 is present in epithelial tissues, whereas SVCT2 is present in most tissues with the exception of lung and skeletal muscle.  相似文献   

10.
The sodium-vitamin C co-transporters SVCT1 and SVCT2 transport the reduced form of vitamin C, ascorbic acid. High expression of the SVCT2 has been demonstrated in adult neurons and choroid plexus cells by in situ hybridization. Additionally, embryonic mesencephalic dopaminergic neurons express the SVCT2 transporter. However, there have not been molecular and kinetic analyses addressing the expression of SVCTs in cortical embryonic neurons. In this work, we confirmed the expression of a SVCT2-like transporter in different regions of the fetal mouse brain and in primary cultures of neurons by RT-PCR. Kinetic analysis of the ascorbic acid uptake demonstrated the presence of two affinity constants, 103 microM and 8 microM. A K(m) of 103 microM corresponds to a similar affinity constant reported for SVCT2, while the K(m) of 8 microM might suggest the expression of a very high affinity transporter for ascorbic acid. Our uptake analyses also suggest that neurons take up dehydroascorbic acid, the oxidized form of vitamin C, through the glucose transporters. We consider that the early expression of SVCTs transporters in neurons is important in the uptake of vitamin C, an essential molecule for the fetal brain physiology. Vitamin C that is found at high concentration in fetal brain may function in preventing oxidative free radical damage, because antioxidant radical enzymes mature only late in the developing brain.  相似文献   

11.
Vitamin C is essential for many enzymatic reactions and also acts as a free radical scavenger. Specific non-overlapping transport proteins mediate the transport of the oxidized form of vitamin C, dehydroascorbic acid, and the reduced form, Lascorbic acid, across biological membranes. Dehydroascorbic acid uptake is via the facilitated-diffusion glucose transporters, GLUT 1, 3 and 4, but under physiological conditions these transporters are unlikely to play a major role in the uptake of vitamin C due to the high concentrations of glucose that will effectively block influx. L-ascorbic acid enters cells via Na+-dependent systems, and two isoforms of these transporters (SVCT1 and SVCT2) have recently been cloned from humans and rats. Transport by both isoforms is stereospecific, with a pH optimum of ~ 7.5 and a Na+: ascorbic acid stoichiometry of 2 : 1. SVCT2 may exhibit a higher affinity for ascorbic acid than SVCT1 but with a lower maximum velocity. SVCT1 and SVCT2 are predicted to have 12 transmembrane domains, but they share no structural homology with other Na+ co-transporters. Potential sites for phosphorylation by protein kinase C exist on the cytoplasmic surface of both proteins, with an additional protein kinase A site in SVCT1. The two isoforms also differ in their tissue distribution: SVCT1 is present in epithelial tissues, whereas SVCT2 is present in most tissues with the exception of lung and skeletal muscle.  相似文献   

12.
Vitamin C is a wide spectrum antioxidant essential for humans, which are unable to synthesize the vitamin and must obtain it from dietary sources. There are two biologically important forms of vitamin C, the reduced form, ascorbic acid, and the oxidized form, dehydroascorbic acid. Vitamin C exerts most of its biological functions intracellularly and is acquired by cells with the participation of specific membrane transporters. This is a central issue because even in those species capable of synthesizing vitamin C, synthesis is restricted to the liver (and pancreas) from which is distributed to the organism. Most cells express two different transproter systems for vitamin C; a transporter system with absolute specificity for ascorbic acid and a second system that shows absolute specificity for dehydroascorbic acid. The dehydroascorbic acid transporters are members of the GLUT family of facilitative glucose transporters, of which at least three isoforms, GLUT1, GLUT3 and GLUT4, are dehydroascorbic acid transporters. Ascorbic acid is transported by the SVCT family of sodium-coupled transporters, with two isoforms molecularly cloned, the transporters SVCT1 y SVCT2, that show different functional properties and differential cell and tissue expression. In humans, the maintenance of a low daily requirement of vitamin C is attained through an efficient system for the recycling of the vitamin involving the two families of vitamin C transporters.  相似文献   

13.
Vitamin C homeostasis in skeletal muscle cells   总被引:3,自引:0,他引:3  
In skeletal muscle, vitamin C not only enhances carnitine biosynthesis but also protects cells against ROS generation induced by physical exercise. The ability to take up both ascorbic and dehydroascorbic acid from the extracellular environment, together with the ability to recycle the intracellular vitamin, maintains high cellular stores of ascorbate. In this study, we examined vitamin C transport and recycling, by using the mouse C2C12 and rat L6C5 muscle cell lines, which exhibit different sensitivity to oxidative stress and GSH metabolism. We found that: (1) both cell lines express SVCT2, whereas SVCT1 is expressed at very low levels only in proliferating L6C5 cells; furthermore L6C5 myoblasts are more efficient in ascorbic acid transport than C2C12 myoblasts; (2) C2C12 cells are more efficient in dehydroascorbic acid transport and ascorbyl free radical/dehydroascorbic acid reduction; (3) differentiation is paralleled by decreased ascorbic acid and dehydroascorbic acid transport and reduction and increased ascorbyl free radical reduction; (4) differentiated cells are more responsive to oxidative stress induced by glutathione depletion; indeed, myotubes showed increased SVCT2 expression and thioredoxin reductase-mediated dehydroascorbic acid reduction. From our data, SVCT2 and NADPH-thioredoxin-dependent DHA reduction appears to belong to an inducible system activated in response to oxidative stress.  相似文献   

14.
Summary. Vitamin C is accumulated in mammalian cells by two types of proteins: sodium-ascorbate co-transporters (SVCTs) and hexose transporters (GLUTs); in particular, SVCTs actively import ascorbate, the reduced form of this vitamin. SVCTs are surface glycoproteins encoded by two different genes, very similar in structure. They show distinct tissue distribution and functional characteristics, which indicate different physiological roles. SVCT1 is involved in whole-body homeostasis of vitamin C, while SVCT2 protects metabolically active cells against oxidative stress. Regulation at mRNA or protein level may serve for preferential accumulation of ascorbic acid at sites where it is needed. This review will summarize the present knowledge on structure, function and regulation of the SVCT transporters. Understanding the physiological role of SVCT1 and SVCT2 may lead to develop new therapeutic strategies to control intracellular vitamin C content or to promote tissue-specific delivery of vitamin C-drug conjugates. Authors’ address: Dr. Isabella Savini, Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy  相似文献   

15.
Vitamin C intracellular accumulation is mediated by Na(+)-dependent vitamin C transporters SVCT1 and -2 and dehydroascorbic acid transporters GLUT1 and -3. It is unclear which pathways dominate in vivo. As a new step to resolve this issue, we identified and tested 6-bromo-6-deoxy-L-ascorbic acid as a specific candidate for SVCTs. In high performance liquid chromatography and electron paramagnetic resonance analyses, the reduced compounds ascorbic acid and 6-bromo-6-deoxy-L-ascorbic acid were similar. The oxidized products 6-bromo-6-deoxy dehydroascorbic acid (BrDHA) and dehydroascorbic acid (DHA) had comparable stabilities, based on reduction recoveries. Upon expression of GLUT1 or GLUT3 in Xenopus oocytes, BrDHA was neither transported nor bound, in contrast to robust transport of DHA. The findings were not explained by differences in the oocyte reduction of DHA and BrDHA because lysed oocytes reduced both compounds equally. Further, there was no transport of the reduced compound, 6-bromo-6-deoxy-L-ascorbic acid, by GLUT1 or GLUT3. As a prerequisite for investigating 6-bromo-6-deoxy-L-ascorbic acid transported by SVCTs, SVCT2 transport activity in oocytes was enhanced 14-fold by construction and use of a vector that added a fixed poly(A) tail to the 3' end of cRNA. For SVCT1 and SVCT2 expressed in oocytes, similar K(m) and V(max) values were observed for ascorbic acid and 6-bromo-6-deoxy-L-ascorbic acid. In human fibroblasts, predicted to have SVCT-mediated ascorbate accumulation, K(m) and V(max) values were again comparable for ascorbic acid and 6-bromo-6-deoxy-L-ascorbic acid. Using activated human neutrophils, predicted to have ascorbate accumulation mediated predominantly by DHA and GLUT transporters, 6-bromo-6-deoxy-L-ascorbic acid accumulation was <1% of accumulation when compared with ascorbic acid. We conclude that 6-bromo-6-deoxy-L-ascorbic acid is the first transport substrate identified as completely specific for SVCTs, but not GLUTs, and provide a new strategy to determine the contribution of each pathway to ascorbate accumulation.  相似文献   

16.
During the process of endochondral bone formation, proliferating chondrocytes give rise to hypertrophic chondrocytes, which then deposit a mineralized matrix to form calcified cartilage. Chondrocyte hypertrophy and matrix mineralization are associated with expression of type X collagen and the induction of high levels of the bone/liver/kidney isozyme of alkaline phosphatase. To determine what role vitamin C plays in these processes, chondrocytes derived from the cephalic portion of 14-day chick embryo sternae were grown in the absence or presence of exogenous ascorbic acid. Control untreated cells displayed low levels of type X collagen and alkaline phosphatase activity throughout the culture period. However, cells grown in the presence of ascorbic acid produced increasing levels of alkaline phosphatase activity and type X collagen mRNA and protein. Both alkaline phosphatase activity and type X collagen mRNA levels began to increase within 24 h of ascorbate treatment; by 9 days, the levels of both alkaline phosphatase activity and type X collagen mRNA were 15-20-fold higher than in non-ascorbate-treated cells. Ascorbate treatment also increased calcium deposition in the cell layer and decreased the levels of types II and IX collagen mRNAs; these effects lagged significantly behind the elevation of alkaline phosphatase and type X collagen. Addition of beta-glycerophosphate to the medium increased calcium deposition in the presence of ascorbate but had no effect on levels of collagen mRNAs or alkaline phosphatase. The results suggest that vitamin C may play an important role in endochondral bone formation by modulating gene expression in hypertrophic chondrocytes.  相似文献   

17.
Despite the fundamental importance of the redox metabolism of mitochondria under normal and pathological conditions, our knowledge regarding the transport of vitamin C across mitochondrial membranes remains far from complete. We report here that human HEK-293 cells express a mitochondrial low-affinity ascorbic acid transporter that molecularly corresponds to SVCT2, a member of the sodium-coupled ascorbic acid transporter family 2. The transporter SVCT1 is absent from HEK-293 cells. Confocal colocalization experiments with anti-SVCT2 and anti-organelle protein markers revealed that most of the SVCT2 immunoreactivity was associated with mitochondria, with minor colocalization at the endoplasmic reticulum and very low immunoreactivity at the plasma membrane. Immunoblotting of proteins extracted from highly purified mitochondrial fractions confirmed that SVCT2 protein was associated with mitochondria, and transport analysis revealed a sigmoidal ascorbic acid concentration curve with an apparent ascorbic acid transport Km of 0.6 mM. Use of SVCT2 siRNA for silencing SVCT2 expression produced a major decrease in mitochondrial SVCT2 immunoreactivity, and immunoblotting revealed decreased SVCT2 protein expression by approximately 75%. Most importantly, the decreased protein expression was accompanied by a concomitant decrease in the mitochondrial ascorbic acid transport rate. Further studies using HEK-293 cells overexpressing SVCT2 at the plasma membrane revealed that the altered kinetic properties of mitochondrial SVCT2 are due to the ionic intracellular microenvironment (low in sodium and high in potassium), with potassium acting as a concentration-dependent inhibitor of SVCT2. We discarded the participation of two glucose transporters previously described as mitochondrial dehydroascorbic acid transporters; GLUT1 is absent from mitochondria and GLUT10 is not expressed in HEK-293 cells. Overall, our data indicate that intracellular SVCT2 is localized in mitochondria, is sensitive to an intracellular microenvironment low in sodium and high in potassium, and functions as a low-affinity ascorbic acid transporter. We propose that the mitochondrial localization of SVCT2 is a property shared across cells, tissues, and species.  相似文献   

18.
We characterized the human Na(+)-ascorbic acid transporter SVCT2 and developed a basic model for the transport cycle that challenges the current view that it functions as a Na(+)-dependent transporter. The properties of SVCT2 are modulated by Ca(2+)/Mg(2+) and a reciprocal functional interaction between Na(+) and ascorbic acid that defines the substrate binding order and the transport stoichiometry. Na(+) increased the ascorbic acid transport rate in a cooperative manner, decreasing the transport K(m) without affecting the V(max), thus converting a low affinity form of the transporter into a high affinity transporter. Inversely, ascorbic acid affected in a bimodal and concentration-dependent manner the Na(+) cooperativity, with absence of cooperativity at low and high ascorbic acid concentrations. Our data are consistent with a transport cycle characterized by a Na(+):ascorbic acid stoichiometry of 2:1 and a substrate binding order of the type Na(+):ascorbic acid:Na(+). However, SVCT2 is not electrogenic. SVCT2 showed an absolute requirement for Ca(2+)/Mg(2+) for function, with both cations switching the transporter from an inactive into an active conformation by increasing the transport V(max) without affecting the transport K(m) or the Na(+) cooperativity. Our data indicate that SVCT2 may switch between a number of states with characteristic properties, including an inactive conformation in the absence of Ca(2+)/Mg(2+). At least three active states can be envisioned, including a low affinity conformation at Na(+) concentrations below 20 mM and two high affinity conformations at elevated Na(+) concentrations whose Na(+) cooperativity is modulated by ascorbic acid. Thus, SVCT2 is a Ca(2+)/Mg(2+)-dependent transporter.  相似文献   

19.
The action of purified rheumatoid synovial collagenase and human neutrophil elastase on the cartilage collagen types II, IX, X and XI was examined. At 25 degrees C, collagenase attacked type II and type X (45-kDa pepsin-solubilized) collagens to produce specific products reflecting one and at least two cleavages respectively. At 35 degrees C, collagenase completely degraded the type II collagen molecule to small peptides whereas a large fragment of the type X molecule was resistant to further degradation. In contrast, collagen type IX (native, intact and pepsin-solubilized type M) and collagen type XI were resistant to collagenase attack at both 25 degrees C and 35 degrees C even in the presence of excess enzyme. Mixtures of type II collagen with equimolar amounts of either type IX or XI did not affect the rate at which the former was degraded by collagenase at 25 degrees C. Purified neutrophil elastase, shown to be functionally active against soluble type III collagen, had no effect on collagen type II at 25 degrees C or 35 degrees C. At 25 degrees C collagen types IX (pepsin-solubilized type M) and XI were also resistant to elastase, but at 35 degrees C both were susceptible to degradation with type IX being reduced to very small peptides. Collagen type X (45-kDa pepsin-solubilized) was susceptible to elastase attack at 25 degrees C and 35 degrees C as judged by the production of specific products that corresponded closely with those produced by collagenase. Although synovial collagenase failed to degrade collagen types IX and XI, all the cartilage collagen species examined were degraded at 35 degrees C by conditioned culture medium from IL1-activated human articular chondrocytes. Thus chondrocytes have the potential to catabolise each cartilage collagen species, but the specificity and number of the chondrocyte-derived collagenase(s) has yet to be resolved.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号