首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of phosphatidylinositol (PI) 3-kinase in specific aspects of insulin signaling was explored in 3T3-L1 adipocytes. Inhibition of PI 3-kinase activity by LY294002 or wortmannin significantly enhanced basal and insulin-stimulated GTPase-activating protein (GAP) activity in 3T3-L1 adipocytes. Furthermore, removal of the inhibitory influence of PI 3-kinase on GAP resulted in dose-dependent decreases in the ability of insulin to stimulate p21ras. This effect was specific to adipocytes, as inhibition of PI 3-kinase did not influence GAP in either 3T3-L1 fibroblasts, Rat-1 fibroblasts, or CHO cells. Immunodepletion of either of the two subunits of the PI 3-kinase (p85 or p110) yielded similar activation of GAP, suggesting that catalytic activity of p110 plays an important role in controlling GAP activity in 3T3-L1 adipocytes. Inhibition of PI 3-kinase activity in 3T3-L1 adipocytes resulted in abrogation of insulin-stimulated glucose uptake and thymidine incorporation. In contrast, effects of insulin on glycogen synthase and mitogen-activated protein kinase activity were inhibited only at higher concentrations of LY294002. It appears that in adipocytes, P1 3-kinase prevents activation of GAP. Inhibition of PI 3-kinase activity or immunodepletion of either one of its subunits results in activation of GAP and decreases in GTP loading of p21ras.  相似文献   

2.
We investigated the effect of insulin on the expression of the enhancer of split- and hairy-related protein-2 gene in 3T3-L1 adipocytes and L6 myotubes. The level of enhancer of split- and hairy-related protein-2 mRNA was increased by insulin in both cells. While both wortmannin and LY294002 blocked the increase in 3T3-L1 adipocytes, and only PD98059 was effective in L6 myotubes. Although the increase by insulin in these cells was inhibited by treatment with actinomycin D, this was enhanced by treatment with cycloheximide. Furthermore, cyclic AMP increased the level of enhancer of split- and hairy-related protein-2 mRNA in both cells in an additive manner. Thus, we conclude that insulin and cyclic AMP induce the expression of the enhancer of split- and hairy-related protein-2 gene in both 3T3-L1 adipocytes and L6 myotubes, and that the gene expression enhanced by insulin is regulated by the cell type-specific pathway. The former requires a phosphoinositide 3-kinase pathway and the latter a mitogen-activated protein kinase pathway.  相似文献   

3.
Emodin, one of the main active components in the root and rhizome of Rheum palmatum L, promoted the conversion of 3T3-L1 fibroblasts to adipocytes, as evidenced by increased glycerol-3-phosphate dehydrogenase (GPDH) activity and the expression of adipocyte aP2 mRNA, as well as accelerated triacylglycerol (TG) accumulation, which was associated with increased mRNA expression levels of both C/EBPalpha and PPARgamma2. By using surface plasmon resonance (SPR) experiment, it was showed that emodin exhibited a very high binding affinity to PPARgamma. In differentiated 3T3-L1 adipocytes, emodin induced a time- and dose-dependent increase in glucose uptake as well as GLUT1 and GLUT4 mRNA expression, and the rate of uptake was partly abrogated by wortmannin (phosphoinositide 3-kinase inhibitor). Meanwhile, insulin-stimulated glucose uptake was increased significantly after treatment with low doses of emodin, and the degree of potentiation was decreased thereafter in response to increasing concentrations. Furthermore, 50 microM emodin profoundly inhibited insulin-stimulated glucose uptake by 25%. These data suggest a new role for emodin as a PPARgamma agonist in 3T3-L1 cells. Besides, it is possible that emodin may also possess other properties contribute to glucose utilization in the adipocytes.  相似文献   

4.
5.
The differentiation-inducing factor-1 (DIF-1) is a signal molecule that induces stalk cell formation in the cellular slime mold Dictyostelium discoideum, while DIF-1 and its analogs have been shown to possess antiproliferative activity in vitro in mammalian tumor cells. In the present study, we investigated the effects of DIF-1 and its analogs on normal (nontransformed) mammalian cells. Without affecting the cell morphology and cell number, DIF-1 at micromolar levels dose-dependently promoted the glucose uptake in confluent 3T3-L1 fibroblasts, which was not inhibited with wortmannin or LY294002 (inhibitors for phosphatidylinositol 3-kinase). DIF-1 affected neither the expression level of glucose transporter 1 nor the activities of four key enzymes involved in glucose metabolism, such as hexokinase, fluctose 6-phosphate kinase, pyruvate kinase, and glucose 6-phosphate dehydrogenase. Most importantly, stimulation with DIF-1 was found to induce the translocation of glucose transporter 1 from intracellular vesicles to the plasma membranes in the cells. In differentiated 3T3-L1 adipocytes, DIF-1 induced the translocation of glucose trasporter 1 (but not of glucose transporter 4) and promoted glucose uptake, which was not inhibited with wortmannin. These results indicate that DIF-1 induces glucose transporter 1 translocation and thereby promotes glucose uptake, at least in part, via a inhibitors for phosphatidylinositol 3-kinase/Akt-independent pathway in mammalian cells. Furthermore, analogs of DIF-1 that possess stronger antitumor activity than DIF-1 were less effective in promoting glucose consumption, suggesting that the mechanism of the action of DIF-1 for stimulating glucose uptake should be different from that for suppressing tumor cell growth.  相似文献   

6.
Fetal brown adipocytes (parental cells) expressed mainly Glut4 mRNA glucose transporter, the expression of Glut1 mRNA being much lower. At physiological doses, insulin stimulation for 15 min increased 3-fold glucose uptake and doubled the amount of Glut4 protein located at the plasma membrane. Moreover, phosphatidylinositol (PI) 3-kinase activity was induced by the presence of insulin in those cells, glucose uptake being precluded by PI 3-kinase inhibitors such as wortmannin or LY294002. H-raslys12-transformed brown adipocytes showed a 10-fold higher expression of Glut1 mRNA and protein than parental cells, Glut4 gene expression being completely down-regulated. Glucose uptake increased by 10-fold in transformed cells compared to parental cells; this uptake was unaltered in the presence of insulin and/or wortmannin. Transient transfection of parental cells with a dominant form of active Ras increased basal glucose uptake by 5-fold, no further effects being observed in the presence of insulin. However, PI 3-kinase activity (immunoprecipitated with anti-αp85 subunit of PI 3-kinase) remained unaltered in H-ras permanent and transient transfectants. Our results indicate that activated Ras induces brown adipocyte glucose transport in an insulin-independent manner, this induction not involving PI 3-kinase activation.  相似文献   

7.
Although a number of studies and approaches have indicated that activation of the Ser/Thr kinase called Akt/protein kinase B is critical for the insulin-stimulated increase of glucose uptake in adipocytes, other studies have indicated that this enzyme may play an ancillary role. For example, a recent study indicated that neomycin would allow insulin-stimulated Glut4 translocation and glucose transport in the presence of the phosphatidylinositol (PI) 3-kinase inhibitor, wortmannin, a known inhibitor of Akt activation (James, D. J., Salaun, C., Brandie, F. M., Connell, J. M. C., and Chamberlain, L. H. (2004) J. Biol. Chem. 279, 20567-20570). To better understand this observation, we examined a number of downstream targets of Akt. As previously reported, treatment of 3T3-L1 adipocytes with neomycin prevented the wortmannin inhibition of insulin-stimulated glucose transport. However, in the presence of neomycin, wortmannin did not inhibit the insulin-stimulated phosphorylation of several downstream targets of Akt including a proline-rich Akt substrate of 40 kDa, ribosomal protein S6, and glycogen synthase kinase-3. In addition, neomycin did not prevent the ability of a structurally unrelated PI 3-kinase inhibitor, LY294002, to inhibit the insulin-stimulated activation of glucose uptake. Moreover, neomycin reversed the inhibitory effect of wortmannin but not LY294002 on insulin stimulation of Akt kinase activity. Finally, neomycin was found to inactivate in vitro the PI 3-kinase inhibitory actions of wortmannin but not LY294002. These results indicate that the effects of neomycin in adipocytes are not mediated via its ability to sequester phosphatidylinositol 4,5-bisphosphate but are instead caused by the ability of neomycin to inactivate wortmannin.  相似文献   

8.
We have recently shown the occurrence of endocytic sucrose uptake in heterotrophic cells. Whether this mechanism is involved in the sucrose-starch conversion process was investigated by comparing the rates of starch accumulation in sycamore cells cultured in the presence or absence of the endocytic inhibitors wortmannin and 2-(4-morpholynyl-)-8-phenyl-4H-1 benzopyran-4-1 (LY294002). These analyses revealed a two-phase process involving an initial 120 min wortmannin- and LY294002-insensitive starch accumulation period, followed by a prolonged phase that was arrested by the endocytic inhibitors. Both wortmannin and LY294002 led to a strong reduction of the intracellular levels of both sucrose and the starch precursor molecule, ADPglucose. No changes in maximum catalytic activities of enzymes closely linked to starch and sucrose metabolism occurred in cells cultured with endocytic inhibitors. In addition, starch accumulation was unaffected by endocytic inhibitors when cells were cultured with glucose. These results provide a first indication that an important pool of sucrose incorporated into the cell is taken up by endocytosis prior to its subsequent conversion into starch in heterotrophic cells. This conclusion was substantiated further by experiments showing that sucrose-starch conversion was strongly prevented by both wortmannin and LY294002 in both potato tuber discs and developing barley endosperms.  相似文献   

9.
10.
11.
12.
UCP3 is a mitochondrial membrane protein expressed in humans selectively in skeletal muscle. To determine the mechanisms by which UCP3 plays a role in regulating glucose metabolism, we expressed human UCP3 in L6 myotubes by adenovirus-mediated gene transfer and in H(9)C(2) cardiomyoblasts by stable transfection with a tetracycline-repressible UCP3 construct. Expression of UCP3 in L6 myotubes increased 2-deoxyglucose uptake 2-fold and cell surface GLUT4 2.3-fold, thereby reaching maximally insulin-stimulated levels in control myotubes. Wortmannin, LY 294002, or the tyrosine kinase inhibitor genistein abolished the effect of UCP3 on glucose uptake, and wortmannin inhibited UCP3-induced GLUT4 cell surface recruitment. UCP3 overexpression increased phosphotyrosine-associated phosphoinositide 3-kinase (PI3K) activity 2.2-fold compared with control cells (p < 0.05). UCP3 overexpression increased lactate release 1.5- to 2-fold above control cells, indicating increased glucose metabolism. In H(9)C(2) cardiomyoblasts stably transfected with UCP3 under control of a tetracycline-repressible promotor, removal of doxycycline resulted in detectable levels of UCP3 at 12 h and 2.2-fold induction at 7 days compared with 12 h. In parallel, glucose transport increased 1.3- and 2-fold at 12 h and 7 days, respectively, and the stimulation was inhibited by wortmannin or genistein. p85 association with membranes was increased 5.5-fold and phosphotyrosine-associated PI3K activity 3.8-fold. In contrast, overexpression of UCP3 in 3T3-L1 adipocytes did not alter glucose uptake, suggesting tissue-specific effects of human UCP3. Thus, UCP3 stimulates glucose transport and GLUT4 translocation to the cell surface in cardiac and skeletal muscle cells by activating a PI3K dependent pathway.  相似文献   

13.
14.
15.
Lipoic acid (LA) is a naturally occurring compound with antioxidant properties. Recent attention has been focused on the potential beneficial effects of LA on obesity and related metabolic disorders. Dietary supplementation with LA prevents insulin resistance and upregulates adiponectin, an insulin-sensitizing adipokine, in obese rodents. The aim of this study was to investigate the direct effects of LA on adiponectin production in cultured adipocytes, as well as the potential signaling pathways involved. For this purpose, fully differentiated 3T3-L1 adipocytes were treated with LA (1–500 μM) during 24 h. The amount of adiponectin secreted to media was detected by ELISA, while adiponectin mRNA expression was determined by RT-PCR. Treatment with LA induced a dose-dependent inhibition on adiponectin gene expression and protein secretion. Pretreatment with the PI3K inhibitor LY294002 inhibited adiponectin secretion and mRNA levels, and significantly potentiated the inhibitory effect of LA on adiponectin secretion. The AMPK activator AICAR also reduced adiponectin production, but surprisingly, it was able to reverse the LA-induced inhibition of adiponectin. The JNK inhibitor SP600125 and the MAPK inhibitor PD98059 did not modify the inhibitory effect of LA on adiponectin. In conclusion, our results revealed that LA reduces adiponectin secretion in 3T3-L1 adipocytes, which contrasts with the stimulation of adiponectin described after in vivo supplementation with LA, suggesting that an indirect mechanism or some in vivo metabolic processing is involved.  相似文献   

16.
In this study 2 phosphatidylinositol 3-kinase (PI 3-kinase)-specific inhibitors, wortmannin and 2-[4-Morpholinyl]-8-phenyl-4H-1-benzopyran-4-one (LY294002), were used to investigate whether PI 3-kinase is involved in the signal transduction that leads to bovine oocyte maturation. Bovine follicular oocytes were cultured in vitro for 24 h in a basic medium consisting of tissue culture medium-199 supplemented with LH, FSH, fetal cow serum, Na-pyruvate and gentamicin. The oocytes were then examined for the stage of meiotic progression and degree of cumulus expansion. In Experiment 1, in cumulus-oocyte complexes (COCs), wortmannin, at any level tested (10(-8) M, 10(-7) M or 10(-6) M), had no effect on resumption of meiosis as judged by germinal vesicle breakdown and progression to prometaphase I or metaphase I. However, wortmannin significantly (P < 0.01) decreased the proportion of oocytes developing to metaphase II in a dose-dependent manner. In Experiment 2, when denuded oocytes were cultured with wortmannin at 0, 10(-7) M and 10(-6) M concentrations, the same pattern of response for COCs was observed, with no effect on meiotic resumption and a significant (P < 0.01) decrease in the proportion of oocytes reaching metaphase II. In Experiment 3, half of the recovered COCs were denuded and both denuded and intact COCs were cultured in the presence of 0, 2.5 x 10(-5) M, 5.0 x 10(-5) M and 7.5 x 10(-5) M LY 294002 before being examined for meiotic progression. Whereas LY294002, at any examined level, had no effect on the percentage of oocytes developing to metaphase I, it significantly (P < 0.01) decreased the proportion of metaphase II oocytes when used at 5.0 x 10(-5) or 7.5 x 10(-5) M for both intact COCs and denuded oocytes. In Experiment 4, no significant difference in the degree of cumulus expansion was scored after the COCs were cultured in the presence of wortmannin or LY294002 or in the absence of either treatment. These results provide indirect evidence for a role of PI 3-kinase in the bovine oocyte itself in regulating meiotic progression beyond metaphase I.  相似文献   

17.
Chromium picolinate (CrPic) has been indicated to activate glucose transporter 4 (GLUT4) trafficking to the plasma membrane (PM) to enhance glucose uptake in 3T3-L1 adipocytes. In skeletal and heart muscle cells, insulin directs the intracellular trafficking of the fatty acid translocase/CD36 to induce the uptake of cellular long-chain fatty acid (LCFA). The current study describes the effects of CrPic and insulin on the translocation of CD36 from intracellular storage pools to the PM in 3T3-L1 adipocytes in comparison with that of GLUT4. Immunofluorescence microscopy and immunoblotting revealed that both CD36 and GLUT4 were expressed and primarily located intracellularly in 3T3-L1 adipocytes. Upon insulin or CrPic stimulation, PM expression of CD36 increased in a similar manner as that for GLUT4; the CrPic-stimulated PM expression was less strong than that of insulin. The increase in PM localization for these two proteins by insulin paralleled LCFA ([1-14C]palmitate) or [3H]deoxyglucose uptake in 3T3-L1 adipocytes. The induction of the PM expression of GLUT4, but not CD36, or substrate uptake by insulin and CrPic appears to be additive in adipocytes. Furthermore, wortmannin completely inhibited the insulin-stimulated translocation of GLUT4 or CD36 and prevented the increased uptake of glucose or LCFA in these cells. Taken together, for the first time, these findings suggest that both insulin and CrPic induce CD36 translocation to the PM in 3T3-L1 adipocytes and that their translocation-inducing effects are not additive. The signaling pathway inducing the translocations is different, apparently resulting in a differential activity of CD36.  相似文献   

18.
Interleukin-15 (IL-15) is a cytokine which is highly expressed in skeletal muscle tissue, and which has anabolic effects on skeletal muscle protein dynamics both in vivo and in vitro. Additionally, administration of IL-15 to rats and mice inhibits white adipose tissue deposition. To determine if the action of IL-15 on adipose tissue is direct, the capacity of cultured murine 3T3-L1 preadipocytes and adipocytes to respond to IL-15 was examined. IL-15 administration inhibited lipid accumulation in differentiating 3T3-L1 preadipocytes, and stimulated secretion of the adipocyte-specific hormone adiponectin by differentiated 3T3-L1 adipocytes. The latter observation constitutes the first report of a cytokine or growth factor which stimulates adiponectin production. IL-15 mRNA expression by cultured 3T3-L1 adipogenic cells and C2C12 murine skeletal myogenic cells was also examined. Quantitative real-time PCR indicated IL-15 mRNA was expressed by C2C12 skeletal myogenic cells, and was upregulated more than 10-fold in differentiated skeletal myotubes compared to undifferentiated myoblasts. In contrast, 3T3-L1 cells expressed little or no IL-15 mRNA at either the undifferentiated preadipocyte or differentiated adipocyte stages. These findings provide support for the hypothesis that IL-15 functions in a muscle-to-fat endocrine axis which modulates fat:lean body composition and insulin sensitivity.  相似文献   

19.
Glucose homeostasis is maintained by the orchestration of peripheral glucose utilization and hepatic glucose production, mainly by insulin. In this study, we found by utilizing a combined parallel chromatography mass profiling approach that lysophosphatidylcholine (LPC) regulates glucose levels. LPC was found to stimulate glucose uptake in 3T3-L1 adipocytes dose- and time-dependently, and this activity was found to be sensitive to variations in acyl chain lengths and to polar head group types in LPC. Treatment with LPC resulted in a significant increase in the level of GLUT4 at the plasma membranes of 3T3-L1 adipocytes. Moreover, LPC did not affect IRS-1 and AKT2 phosphorylations, and LPC-induced glucose uptake was not influenced by pretreatment with the PI 3-kinase inhibitor LY294002. However, glucose uptake stimulation by LPC was abrogated both by rottlerin (a protein kinase Cδ inhibitor) and by the adenoviral expression of dominant negative protein kinase Cδ. In line with its determined cellular functions, LPC was found to lower blood glucose levels in normal mice. Furthermore, LPC improved blood glucose levels in mouse models of type 1 and 2 diabetes. These results suggest that an understanding of the mode of action of LPC may provide a new perspective of glucose homeostasis.  相似文献   

20.
Previous studies suggest that regulation of hexose uptake in Chinese hamster ovary fibroblasts can occur by alterations in glucose transporter intrinsic activity without changes in cell surface transporter number (Harrison, S. A., Buxton, J. M., Helgerson, A. L., MacDonald, R. G., Chlapowski, F. J., Carruthers, A., and Czech, M. P. (1990) J. Biol. Chem. 265, 5793-5801). We tested this hypothesis using 3T3-L1 fibroblasts and adipocytes which exhibit 5-6-fold increases in 2-deoxyglucose or 3-O-methylglucose uptake when exposed to low micromolar concentrations of cadmium for 18 h. Cadmium treatment decreased the apparent Km of 3T3-L1 fibroblasts for 3-O-methylglucose influx from approximately 28 to 9 mM and increased the apparent Vmax by 2-3-fold. These fibroblasts lack the skeletal muscle/adipocyte-type (GLUT4) transporter and showed only a small increase in total cellular immunoreactive HepG2 type (GLUT1) transporter in response to cadmium. Furthermore, cell surface GLUT1 levels did not change in 3T3-L1 fibroblasts exposed to cadmium, as assessed by the binding to intact cells of an antibody which recognizes an extracellular GLUT1 epitope. Insulin enhanced 2-deoxyglucose uptake 2-fold in 3T3-L1 fibroblasts, but did not further stimulate cadmium-activated transport rates. In contrast, insulin stimulated hexose transport 15-fold in 3T3-L1 adipocytes, which express both GLUT1 and GLUT4 proteins, and this effect was fully additive with the 5-fold effect of cadmium. Cadmium had little or no effect on immunoreactive GLUT1 or GLUT4 in isolated 3T3-L1 adipocyte plasma membranes. In contrast, insulin action led to marked recruitment (3-fold) of GLUT4 to the plasma membrane fraction in adipocytes treated with or without cadmium. Taken together, these data are consistent with the hypothesis that cadmium-activated sugar uptake is catalyzed by GLUT1, whereas insulin-stimulated sugar uptake is catalyzed predominantly by GLUT4 in 3T3-L1 adipocytes. Furthermore, the data suggest that the GLUT1 transporter can undergo significant increases in intrinsic catalytic activity in response to cadmium treatment of 3T3-L1 fibroblasts and adipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号