首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kohler and Milstein have shown that individual clones of normal antibody-secreting lymphocytes could be immortalized by fusion with myeloma cells. These investigators initiated a new era of technology with the successful in vitro production of monoclonal antibodies via somatic cell hybridization. With the use of monoclonal antibodies, many major problems arising from the limited specificity and reproducibility of conventional antisera can be solved. Some of the commonly employed methods for the production of monoclonal antibody are: (1) fusion of sensitized lymphocytes and myelomas from different sources to produce continuous antibody-producing cell lines; (2) in vitro viral transformation of sensitized lymphocytes to form continuous antibody-producing cells; (3) hybrid fusion of sensitized lymphocytes and continuous B lymphocyte cell lines. During the past few years, monoclonal antibody methodology has been used in almost every area of biological research. Monoclonal antibodies have been used as structural probes for proteins and hormones, and as highly specific agents for histocompatibility testing, tumor localization, immunotherapy, purification of molecules, identification of new surface antigens on lymphocytes and tumor cells, and detection of drug levels and microbial and parasitic diseases. In addition, several investigators have developed alternative methods for the production of human as well as mouse and rat monoclonal antibodies. The new technology of in vitro production of animal and human monoclonal antibodies will have many future applications in diagnosis and therapy in laboratory and clinical medicine.  相似文献   

2.
单克隆抗体在生物学和医学研究领域中显示了极大的应用价值,是免疫检验中的新型试剂,是生物治疗的导向武器。作为医学检验试剂,单克隆抗体可以充分发挥其优势,如特异性好,灵敏度高,更便于质量控制,利于标准化和规范化。传统的方法是利用小鼠腹水制备单克隆抗体,但是近几十年杂交瘤细胞体外大规模培养制备单克隆抗体技术也在不断发展。特别是单克隆抗体在疾病诊断和治疗方面的需求,更进一步促进了杂交瘤细胞体外培养生产技术的发展,体外培养杂交瘤细胞生产的单克隆抗体已应用到许多方面。由于杂交瘤细胞的半贴壁性质,无论是悬浮培养还是贴壁培养,均可进行杂交瘤细胞的体外大规模培养。针对应用于体外诊断试剂的杂交瘤细胞体外培养制备单克隆抗体进行综述,主要包括中空纤维细胞培养和生物反应器细胞培养方法,以及不同培养方法优化的进展。  相似文献   

3.
The generation of affinity reagents, usually monoclonal antibodies, remains a critical bottleneck in biomedical research and diagnostic test development. Recombinant antibody-like proteins such as scFv have yet to replace traditional monoclonal antibodies in antigen detection applications, in large part because of poor performance of scFv in solution. To address this limitation, we have developed assays that use whole yeast cells expressing scFv on their surfaces (yeast-scFv) in place of soluble purified scFv or traditional monoclonal antibodies. In this study, a nonimmune library of human scFv displayed on the surfaces of yeast cells was screened for clones that bind to recombinant cyst proteins of Entamoeba histolytica, an enteric pathogen of humans. Selected yeast-scFv clones were stabilized by lyophilization and used in detection assay formats in which the yeast-scFv served as solid support-bound monoclonal antibodies. Specific binding of antigen to the yeast-scFv was detected by staining with rabbit polyclonal antibodies. In flow cytometry-based assays, lyophilized yeast-scFv reagents retained full binding activity and specificity for their cognate antigens after 4 weeks of storage at room temperature in the absence of desiccants or stabilizers. Because flow cytometry is not available to all potential assay users, an immunofluorescence assay was also developed that detects antigen with similar sensitivity and specificity. Antigen-specific whole-cell yeast-scFv reagents can be selected from nonimmune libraries in 2-3 weeks, produced in vast quantities, and packaged in lyophilized form for extended shelf life. Lyophilized yeast-scFv show promise as low cost, renewable alternatives to monoclonal antibodies for diagnosis and research.  相似文献   

4.
Using indirect immunofluorescence assays on acetone-fixed smears of a series of different parasites, we have shown that two monoclonal antibodies bind specifically to Trypanosoma congolense organisms. The antibodies bind to both bloodstream trypomastigotes and procyclic culture forms of the parasite and are thus not stage specific. Immunoprecipitation and immunoblot analysis showed that both monoclonal reagents bound a protein of approximately 31,000 m.w. This antigen appeared to be located on the plasma membrane of T. congolense, but the epitope was not exposed on the surface of living bloodstream or procyclic organisms. The antigen was detectable on acetone-fixed organisms or in trypanosome lysates in enzyme-linked immunosorbent assays and may therefore by useful as a species-specific marker in field assays for epidemiologic and clinical investigations.  相似文献   

5.
Anti-glycan monoclonal antibodies have important applications in human health and basic research. Therapeutic antibodies that recognize cancer- or pathogen-associated glycans have been investigated in numerous clinical trials, resulting in two FDA-approved biopharmaceuticals. Anti-glycan antibodies are also utilized to diagnose, prognosticate, and monitor disease progression, as well as to study the biological roles and expression of glycans. High-quality anti-glycan mAbs are still in limited supply, highlighting the need for new technologies for anti-glycan antibody discovery. This review discusses anti-glycan monoclonal antibodies with applications to basic research, diagnostics, and therapeutics, focusing on recent advances in mAbs targeting cancer- and infectious disease-associated glycans.  相似文献   

6.
《MABS-AUSTIN》2013,5(4):770-777
Although improvements in technology for the isolation of potential therapeutic antibodies have made the process increasingly predictable, the development of biologically active monoclonal antibodies (mAbs) into drugs can often be impeded by developability issues such as poor expression, solubility, and promiscuous cross-reactivity. Establishing early stage developability screening assays capable of predicting late stage behavior is therefore of high value to minimize development risks. Toward this goal, we selected a panel of 16 monoclonal antibodies (mAbs) representing different developability profiles, in terms of self- and cross-interaction propensity, and examined their downstream behavior from expression titer to accelerated stability and pharmacokinetics in mice. Clearance rates showed significant rank-order correlations to 2 cross-interaction related assays, with the closest correlation to a non-specificity assay on the surface of yeast. Additionally, 2 self-association assays correlated with each other but not to mouse clearance rate. This case study suggests that combining assays capable of high throughput screening of self- and cross-interaction early in the discovery stage could significantly lower downstream development risks.  相似文献   

7.
Immunoassays are a class of analytical techniques based on the selective affinity of a biological antibody for its antigen. Competitive binding assays, of which the radioimmunoassay (RIA) was the first example, are based on the competition between analyte and a labelled probe for a limited number of binding sites. Molecularly imprinted polymers (MIPs) have been shown to be suitable replacements for biological antibodies in such techniques. Molecularly imprinted sorbent assays (MIAs) similar to RIA have been developed for a range of analytes of clinical and environmental interest. Limits of detection and selectivities of such assays are often similar to those using biological antibodies. Some assays have been used for measurements directly in biological fluids. The field is reviewed and it is shown that some perceived disadvantages of MIPs do not hinder their application in competitive binding assays: many MIAs have been demonstrated in aqueous solvents, and it has been shown that the quantity of template required to prepare imprinted polymers can be drastically reduced, and that binding site heterogeneity is not a problem as long as the sites which bind the probe most strongly are selective. Finally, recent developments including assays in microtitre plates, the use of enzyme-labelled probes, flow-injection assays and a scintillation proximity MIA are discussed.  相似文献   

8.
Hybridomas: a new dimension in biological analyses   总被引:1,自引:0,他引:1  
R H Kennett 《In vitro》1981,17(12):1036-1050
Since the first report of hybridomas producing monoclonal antibodies by Kohler and Milstein in 1975, this technique has spread to nearly all areas of biological, biochemical, and biomedical research. Watching the use of these methods spread from immunologists to cell biologists, developmental biologists, biochemists and to other biological disciplines and observing the nearly logarithmic increase in publications using these reagents has been in itself fascinating and informative. An overview of the development of this technology and its applications is presented including the use of monoclonal antibodies to study cell surface molecules, differentiation antigens, receptors, and histocompatibility antigens. The use of these antibodies to analyze microorganisms and parasitic antigens as well as their use in the genetic analysis of human cell surface antigens and the detection of polymorphic variation in enzymes and other proteins is discussed. Examples of the application of monoclonal reagents to the study of tumor cell biology including the labeling of metastatic tumor cells and the detection of cell surface molecules implicated in the regulation of growth control and cell division are provided.  相似文献   

9.
Monoclonal antibodies, 30 years of success   总被引:1,自引:0,他引:1  
The hybridoma fusion technology, proposed in 1975, gave for the first time an access to murine monoclonal antibodies. The high potential of these new molecules, as laboratory tools, was exploited during the two following decades. Nowadays, antibodies, still omnipresent in both diagnostic and research domains, have progressively invaded the therapeutic field. New technologies, such as phage display and transgenic mice, have been implemented, allowing for the isolation of fully human antibodies. The natural complexity of the antibody molecules and the development of engineering methodologies helped making them ideal candidates for new applications and immunotherapeutic challenges. The present review is a temporary update of the different antibody-derived molecules as well as a walk-through among the techniques recently applied to antibody engineering. In addition it also address an important issue, such as the development of expression systems suitable large-scale production of recombinant antibodies.  相似文献   

10.
The field of cell fusion technology has exploded over the past ten years, revolutionizing biology and medicine. Today, monoclonal antibodies specific for almost any antigen can be generated, setting the stage for many different applications. Continued research that focuses on refining the technology and developing innovative techniques will enable the field of cell fusion technology to reach its full potential.  相似文献   

11.
Balb/С mice were immunized with recombinant Ebola virus glycoprotein. Following the selection, screening, and cloning of murine hybridomas, we obtained five genetically stable clones of monoclonal antibodies GPE118 (IgG), GPE274 (IgM), GPE325 (IgM), GPE463 (IgM), and GPE534 (IgG). These antibodies were isolated and purified from the ascitic fluid of Balb/С mice using Protein G affinity chromatography (for IgG) and euglobulin precipitation (for IgM). To select at least three candidate antibodies for testing in biological assays as components of an antibody cocktail for the prophylaxis and treatment of hemorrhagic fever, we carried out an immunochemical analysis of the epitope specificity of the isolated antibodies. Based on the data of immunoblotting and sandwich ELISA, it became evident that the epitope recognized by GPE 534 differs from the epitopes recognized by the monoclonal antibodies GPE 118 and GPE 325. The last two antibodies also have different epitope specificity: it follows from the immunoblotting data and from the data on the binding of these antibodies with the intact and oxidized (partly deglycosylated) recombinant glycoprotein. For the biological activity studies and the development of recombinant counterparts, we selected three candidate high-affinity monoclonal antibodies GPE 534, GPE 118, and GPE 325.  相似文献   

12.
人源单克隆抗体具有免疫原性低、半衰期长等优势,成为了体内应用中不可或缺的生物制剂.人类抗体库为人源单克隆抗体的制备提供了丰富的来源,人B细胞永生化是获得人类抗体库的潜在有效方法,可应用于人源单克隆抗体的制备.由于各平台均有亟待解决的问题,基于人B细胞永生化的抗体制备尚局限在实验室研究阶段,且目前尚缺乏一篇系统综述以明确...  相似文献   

13.
M Ito  T Ihara  C Grose    S Starr 《Journal of virology》1985,54(1):98-103
Seven murine monoclonal antibodies reacting with major glycoproteins of varicella-zoster virus were tested for functional activity in assays for antibody-dependent cellular cytotoxicity (ADCC) and antibody-plus-complement-mediated lysis. Human peripheral blood mononuclear cells killed varicella-zoster virus-infected fibroblasts in the presence of three of four monoclonal antibodies directed against gp98/62 and a single monoclonal antibody directed against gp118. Neither of two monoclonal antibodies directed against gp66 was able to mediate ADCC. In 18-h assays, adherent effector cells were more active than nonadherent effector cells in mediating ADCC. Adherent cells treated with anti-Leu-11b and complement retained their cytotoxic activity, suggesting that monocytes are responsible for most of the adherent-cell-mediated cytotoxicity. Both immunoglobulin G1 and G2a murine monoclonal antibodies were able to participate in ADCC. Of the two immunoglobulin G2a monoclonal antibodies tested, both of which reacted with gp98/62, only one mediated lysis in the presence of complement. These results indicate that some murine monoclonal antibodies against major glycoproteins of varicella-zoster virus have functional activity in cytotoxicity assays.  相似文献   

14.
Using a panel of monoclonal antibodies against human myoglobin (Mb), we have shown that the sensitivity of antigen-capture ELISA can be significantly increased by simultaneous immobilization of two cooperating capture monoclonal antibodies on a solid phase. This method ("triple-site ELISA") uses three monoclonal antibodies to different epitopes of the same antigen (two capture/one tracer) unlike the traditional double-site assay using one capture and one tracer monoclonal antibody. We developed double- and triple-site ELISA for Mb by varying the capture and tracer monoclonal antibodies. Triple-site assays showed 4-6-fold increase in sensitivity compared to the double-site assays. A model for this effect is suggested; according to the model, in triple-site ELISA, high-affinity cyclic configurations can be formed by an antigen, two capture monoclonal antibodies, and the surface of the solid phase.  相似文献   

15.
Tick-borne diseases (TBDs) are a major economic constraint to livestock production in sub-Saharan Africa. ILRI is focussing on developing a range of products, such as vaccines, diagnostics and decision support services to underpin improved control programmes against these diseases. We have developed three highly sensitive and specific enzyme linked immuno-assays (ELISAs), which allow precise diagnosis of Theileria parva, Babesia bigemina and Anaplasma marginale. These tests have been standardised and validated using defined experimental and field infection sera. Parasite specific recombinant antigens and monoclonal antibodies against bovine immunoglobulins as secondary antibodies have played an important role in in enhancing the sensitivity and specificity of the assays. They have been further evaluated in on-farm longitudinal sero-epidemiological studies to define infection dynamics and disease risks in various farming systems in Kenya and Uganda. In addition, DNA-based tests for differentiation of Theileria species and characterisation of Theileria parva stocks have been developed. These tests have been derived through physical mapping and sequencing of key elements of the T. parva genome, which include repetitive and telomeric regions, minisatellite sequences, antigen genes and a number of random DNA sequences. These tools are currently being deployed in conjunction with field immunisation programmes to determine the biological impact of introducing live vaccines of T. parva on population dynamics.  相似文献   

16.
Molecular biological methods that use antibodies and nucleic acids to detect specific foodborne bacterial pathogens were scarcely known a decade and a half ago. Few scientists could have predicted that these tools of basic research would come to dominate the field of food diagnostics. Today, a large number of cleverly designed assay formats using these technologies are available commercially for the detection in foods of practically all major established pathogens and toxins, as well as of many emerging pathogens. These tests range from very simple antibody-bound latex agglutination assays to very sophisticated DNA amplification methods. Although molecular biological assays are more specific, sensitive, and faster than conventional (often cultural) microbiological methods, the complexities of food matrices continue to offer unique challenges that may preclude the direct application of these molecular biological methods. Consequently, a short cultural enrichment period is still required for food samples prior to analysis with these assays. The greater detection sensitivity of molecular biological methods may also affect existing microbiological specifications for foods; this undoubtedly will have repercussions on the regulatory agencies, food manufacturers, and also consumers. The US government has the right to retain a nonexclusive royalty-free license in and to any copyright covering this article. Use of trade names is for identification only and does not imply an endorsement by the US FDA.  相似文献   

17.
Advances in proteomic research allow the identification of several hundred protein components in complex biological specimens. Structural information is typically lost during proteomic investigations. For this reason, the rapid isolation of monoclonal antibodies specific to proteins of interest would allow the study of structurally intact biological specimens, thus providing complementary proteomic information. Here, we describe the design, construction, characterization, and use of a large synthetic human antibody phage display library (ETH-2-Gold) containing three billion individual antibody clones. A large repertoire of antibodies with similar biochemical properties was produced by appending short variable complementarity-determining region 3 (CDR3) onto three antibody germline segments (DP47, DPK22, and DPL16), which are frequently found in human antibodies. The ETH-2-Gold library exhibits efficient display of antibody fragments on filamentous phage, as assessed by immunoblot. Furthermore, the library is highly functional, since >90% of clones express soluble antibodies in bacteria and since good quality monoclonal antibodies have been isolated against 16 different antigens. The usefulness of the library as a tool for generating monoclonal antibodies for biomedical applications was tested using the C-domain of tenascin-C (a marker of angiogenesis) as antigen and showing that specific antibodies to this target were able to stain vascular structures in tumor sections.  相似文献   

18.
Design of humanized antibodies: from anti-Tac to Zenapax   总被引:3,自引:0,他引:3  
Since the introduction of hybridoma technology, monoclonal antibodies have become one of the most important tools in the biosciences, finding diverse applications including their use in the therapy of human disease. Initial attempts to use monoclonal antibodies as therapeutics were hampered, however, by the potent immunogenicity of mouse (and other rodent) antibodies in humans. Humanization technology has made it possible to remove the immunogenicity associated with the use of rodent antibodies, or at least to reduce it to an acceptable level for clinical use in humans, thus facilitating the application of monoclonal antibodies to the treatment of human disease. To date, nine humanized monoclonal antibodies have been approved for use as human therapeutics in the United States. In this paper, we describe procedures for antibody humanization with an emphasis on strategies for designing humanized antibodies with the aid of computer-guided modeling of antibody variable domains, using as an example the humanized anti-CD25 monoclonal antibody, Zenapax.  相似文献   

19.
Bovine brain, hypothalamus, pituitary, and retina contain potent anionic polypeptide mitogens for endothelial cells. Immunological assays using murine monoclonal antibodies against bovine endothelial cell growth factor (ECGF) and radioreceptor assays using [125I]ECGF were performed to determine the cross-reactivity of ECGF with bovine acidic pI brain-derived fibroblast growth factor (acidic FGF) and bovine eye-derived growth factor-II [EDGF-II). We observed that acidic FGF and EDGF-II are recognized by anti-ECGF monoclonal antibodies and compete with [125I] ECGF for receptor occupancy. Furthermore, the biological activity of ECGF, acidic FGF, and EDGF-II is potentiated by the glycosaminoglycan, heparin. These results argue that ECGF, acidic FGF, and EDGF-II belong to a common family of polypeptide growth factors.  相似文献   

20.
Many biological and biomedical laboratory assays require the use of antibodies and antibody fragments that strongly bind to their cell surface targets. Conventional binding assays, such as the enzyme-linked immunosorbent assay (ELISA) and flow cytometry, have many challenges, including capital equipment requirements, labor intensiveness, and large reagent and sample consumption. Although these techniques are successful in mainstream biology, there is an unmet need for a tool to quickly ascertain the relative binding capabilities of antibodies/antibody fragments to cell surface targets on the benchtop at low cost. We describe a novel cell capture assay that enables several candidate antibodies to be evaluated quickly as to their relative binding efficacies to their cell surface targets. We used chimeric rituximab and murine anti-CD20 monoclonal antibodies as cell capture agents on a functionalized microscope slide surface to assess their relative binding affinities based on how well they capture CD20-expressing mammalian cells. We found that these antibodies’ concentration-dependent cell capture profiles correlate with their relative binding affinities. A key observation of this assay involved understanding how differences in capture surfaces affect the assay results. This approach can find utility when an antibody or antibody fragment against a known cell line needs to be selected for targeting studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号