首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Medium density fiberboard (MDF) production worldwide is increasing due to the development of new manufacturing technologies. As a result, MDF products are increasingly utilized in traditional wood applications that require fungal and insect resistance. This study evaluated the ability of white and brown rot fungi and termites to decompose MDF consisting of different wood species by measuring weight loss. Furnish in the boards was prepared from heart and sapwood portions of pine (Pinus nigra Arnold var. pallasiana), beech (Fagus orientalis Lipsky), and European oak (Quercus robur L.) species. Fungal decay resistance tests were performed according to ASTM D 2017-81 standard method using two brown-rot fungi, Gloeophyllum trabeum (Pers. ex Fr.) Murr. (Mad 617), Postia placenta (Fries) M. Larsen et Lombard (Mad 698), and one white-rot fungus, Trametes versicolor (L. ex Ft.) Pilat (Mad 697). MDF and wood specimens were also bioassayed against the eastern subterranean termite, Reticulitermes flavipes (Kollar) in order to determine termite resistance of the specimens. MDF specimens containing oak and mixed furnish demonstrated increased durability against decay fungi. Only pine, oak, and mixed MDF specimens met the 25% or less weight loss limit to be classified resistant according to ASTM D 2017-81 standard method. Overall, MDF specimens made from oak showed better performance than oak solid wood specimens. Accelerated aging according to ASTM D 1037-96a standard method before fungal bioassay decreased fungal resistance of the specimens. In contrast to the fungal bioassay, MDF specimens made from beech and mixed furnish showed decreased weight losses from termite attack after 4 weeks. However, none of the MDF specimens were resistant to termite attack. In severe conditions, the MDFs may require the incorporation of chemical biocides prior to board production for increasing the resistance of MDF to termite attack.  相似文献   

2.
In this work, the resistance of black pine wood (Pinus nigra L.) vacuum-treated with zinc oxide, zinc borate and copper oxide nanoparticles against mold and decay fungi and the subterranean termites was evaluated. Some of the nanocompounds tested were forced with acrylic emulsions to avoid leaching. Results showed that mold fungi were slightly inhibited by nanozinc borate, while the other nanometal preparations did not inhibit mold fungi. Mass loss from fungal attack by Trametes versicolor was significantly inhibited by the zinc-based preparations, while the brown-rot fungus, Tyromyces palustris was not inhibited by the nanometal treatments. Notably, nanozinc borate plus acrylic emulsion imparted very high resistance in pine wood to the white-rot fungus, T. versicolor with a mass loss of 1.8%. Following leaching, all pine specimens treated with nanozinc borate, with or without acrylic emulsion, strongly inhibited termite feeding, i.e. mass losses varying at 5.2–5.4%. In contrast, the copper-based treatments were much less effective against the subterranean termites, Coptotermes formosanus. In general, nanozinc borate possessed favorable properties, that is, inhibition of termite feeding and decay by T. versicolor.  相似文献   

3.
The objective of this study was to use FT-IR analysis to investigate the chemical composition of aged and un-aged bamboo specimens, with and without node sections, decayed by brown-rot fungi. Specimens were exposed to two brown-rot fungi, Coniophora puteana and Poria placenta, for 8 weeks after which decay was assessed by weight loss and FT-IR spectra analysis. Depending on the bamboo section examined, the aging process reduced decay resistance of specimens. Weight loss (measured as a percentage) decreased from the top to the bottom portion of bamboo culms. The presence of nodes in the specimens increased weight loss caused by P. placenta attack, and caused only a slight increase in weight loss from C. puteana attack. Significant chemical changes in bamboo were observed after fungal degradation, as revealed by FT-IR analyses. Consistent with the degradation mechanism of brown-rot fungi, lignin was essentially un-degraded or modified. Both brown-rot fungi caused a sharp decrease in the carbonyl absorption area. Surprisingly, cellulose peaks of degraded specimens were nearly similar to the peaks of control specimens. Aging treatments and biodegradation affected the crystalline structure of bamboo specimens. Poria placenta degraded wood components faster and changed the crystallinity more than C. puteana did, in accordance with the weight losses due to decay.  相似文献   

4.
Bioincising is a biotechnological process that aims at the improvement of wood preservative uptake in wood species with a low permeability, such as Norway spruce (Picea abies (L.) Karst). The process is based on a short-term pre-treatment with white-rot fungus Physisporinus vitreus. During incubation the membranes of bordered and half bordered pits are supposed to be degraded by fungal activity resulting in a better treatability of the wood structure for wood preservatives. In the present study, first of all the resistance of bioincised Norway spruce heartwood and untreated controls against blue-stain and wood-decay fungi (white- and brown-rot) was determined. Then, bioincised and untreated specimens were dipped or vacuum impregnated with six wood preservatives and substance uptake was assessed gravimetrically. Additionally, the penetration of 3-iodo-2-propynyl butylcarbamate (IPBC) into the wood was analyzed by high-pressure liquid chromatography (HPLC). Finally, wood resistance was assessed according to the European standards EN 152 and EN 113. Results showed no difference between bioincised wood without preservatives and the untreated wood against blue-stain discolouration. However, a significant (P < 0.05) increase in susceptibility against wood decay was recorded. In the bioincised wood samples a significantly higher uptake of all the different preservatives was determined and the HPLC-method revealed that IPBC penetrated deeper into bioincised wood than into control samples. The improved uptake of preservatives into bioincised wood resulted in a significantly higher resistance against white- and brown-rot fungi. However, only a slight protection against wood discolouration by blue-stain fungi was recorded. The results of this study show for the first time that the biotechnological process with P. vitreus can be used to improve wood durability by increasing the uptake and penetration of wood preservatives.  相似文献   

5.
The heartwood of Caesalpinia echinata Lam. (Leguminosae) (commonly called brazilwood) is used for violin bow manufacture due to the unique vibrational and physical properties found in the wood. In the present work, the effects of Pycnoporus sanguineus (white-rot fungus), Gloeophyllum trabeum (brown-rot fungus), Chaetomium globosum (soft-rot fungus), and Cryptotermes brevis (dry-wood termite) on weight losses and chemical composition of extractives and cell-wall polysaccharides of C. echinata wood were investigated under laboratory conditions and compared to those obtained for Anadenanthera macrocarpa, Eucalyptus grandis, and Pinus elliottii. The heartwood of C. echinata was found to be as resistant as A. macrocarpa to the decay fungi tested and to the attack of the dry-wood termite. Pinitol and galactopinitol A were the main sugar alcohols found in the extractives of wood of C. echinata, their presence, however, did not appear related to the resistance to fungal decay. Although only incipient stages of decay were found, the modifications in cell-wall polysaccharide composition of heartwood of C. echinata by rot fungi were related to decrease in polymers other than xylans. The high resistance of C. echinata to xylophages is probably due to the presence of toxic extractives in the wood.  相似文献   

6.
This study evaluated the relative ability of various combinations of copper sulfate with either boric acid or calcium-precipitating agent, N′-N-(1, 8-naphthalyl) hydroxylamine (NHA-Na), to inhibit fungal degradation and attack by Formosan subterranean termites (Coptotermes formosanus Shiraki). Wood specimens were treated with either 1%, 0.5%, or 0.1% concentrations of copper sulfate, boric acid, NHA-Na, copper sulfate + boric acid, or copper sulfate + NHA-Na mixtures. Treated specimens were subjected to laboratory decay-resistance tests by using petri dishes inoculated with the Basidiomycetes fungi Tyromyces palustris and Trametes versicolor for 12 weeks. Treated wood specimens were also subjected to termite-resistance tests under laboratory conditions. Increased efficacy of copper sulfate against the brown-rot fungus T. palustris was observed when either boric acid or NHA-Na was added. The most effective treatments against the fungi tested were NHA-Na only treatments at 1% and 0.5% concentration levels. Boric acid treatments were not able to protect wood against decay after leaching because of excessive leaching of boron. Similar results were obtained in termite-resistance tests in comparison with decay-resistance tests. These results indicate that the efficacy of the treatments in preventing fungal and termite attack is a function of the type of preservative.  相似文献   

7.
Natural decay resistance of teak wood grown in home-garden forestry and the factors influencing decay resistance were determined in comparison with that of a typical forest plantation. Accelerated laboratory tests were conducted on 1800 wood samples drawn from 15 trees of three planted sites. Analysis of variance based on a univariate mixed model showed that planted site, fungal species, and their interaction terms were important sources of variation in decay resistance. With increasing decay resistance from centre to periphery of the heartwood, radial position was a critical factor and the interaction effect of fungal species × radial position was significant in influencing the durability. No significant differences were found in decay resistance either between the opposite radii or due to the various possible interaction terms of radii with the site, fungal species and radial position. There were significant differences in decay resistance against brown-rot fungi between wet and dry sites of home-garden teak although differences against white-rot fungi were non-significant among the three planted sites. Polyporus palustris was the more aggressive brown-rot fungus than Gloeophyllum trabeum. The higher susceptibility of wet site home-garden teak to brown-rot decay was associated with a paler colour of the wood and lower extractive content.  相似文献   

8.
Nanotechnology has the potential to affect the field of wood preservation through the creation of new and unique metal biocides with improved properties. This study evaluated leachability and efficacy of southern yellow pine wood treated with copper, zinc, or boron nanoparticles against mould fungi, decay fungi, and Eastern subterranean termites. Results showed that nanocopper with and without surfactant, nanozinc, and nanozinc plus silver with surfactant resisted leaching compared with metal oxide controls. Nearly all nanoboron and boric acid was released from the treated wood specimens during leaching. Mould fungi were moderately inhibited by nanozinc oxide with surfactant, but the other nanometal preparations did not significantly inhibit mould fungi. Mass loss from Gloeophyllum trabeum was significantly inhibited by all copper preparations, while Antrodia sp. was not inhibited by nanometal treatments. Nanometals imparted high resistance in southern yellow pine to the white-rot fungus, Trametes versicolor. Unleached specimens treated with nanoboron or nanozinc plus surfactant caused 100% and 31% mortality, respectively. All specimens treated with nanozinc or nanozinc plus silver inhibited termite feeding, but the copper treatments were less effective against termites. Nanozinc possessed the most favorable properties: leach resistance, termite mortality, and inhibition of termite feeding and decay by the white-rot fungus.  相似文献   

9.
Basidiomycota brown rot fungus (Fomitopsis pinicola) and two white rot fungi (Phlebia radiata, Trichaptum abietinum) were cultivated on thin slices of spruce wood individually and in interspecies combinations. Within 12 months, F. pinicola substantially decomposed spruce wood observed as mass loss, also in three-species combinations. However, white rot fungi through hyphal interactions negatively affected the brown-rot indicative iron reduction capacity of F. pinicola. Decay-signature gene expression in mycelial interaction zones indicated suppression of brown rot mechanism but stimulation of enzymatic white-rot lignin attack by P. radiata. Wood ultrastructure imaging showed white-rot dominance in the fungal combinations, whereas destructive brown-rot was evident with F. pinicola alone. Our results confirm the dynamic pattern of enzyme production in fungal combinations, and transition from brown to white rot decomposition metabolism during the late stage of wood decay after one year of interspecific interactions.  相似文献   

10.
Decay and termite resistance of wood treated with tar oil obtained from a commercial pyrolysis process of macadamia nut shells was evaluated. Vacuum-treated pinewood specimens were subjected to two brown- and two white-rot fungi based on the soil-block test method specified by the American Wood Protection Association after a 10-day-leaching process. Treated specimens were also subjected to the subterranean termite attack according to Japanese Industrial Standards (JIS) for 3 weeks under laboratory conditions. In the study, growth inhibition of selected fungi with the tar oil was also tested in vitro. Treated wood specimens at a retention level of 460 kg m−3 showed good protection against all the fungi tested. Mass losses in leached specimens were less than those observed in unleached specimens. Similar results were seen when the specimens were subjected to termite attack. Inhibition tests showed that higher concentrations of the tar oil are critical for inhibition of the brown-rot fungi compared to the concentrations required to impede the white-rot and sap-staining fungi tested.  相似文献   

11.
Biocides must be developed for controlling mould establishment on cellulose-based building materials. Accordingly, biocides intended for indoor applications must be non-toxic, non-volatile, odourless, hypoallergenic, and able to provide long-term protection under conditions of high humidity. Multi-component biocide systems were tested in American Wood-Preservers’ Association soil block tests for inhibition of brown-rot and white-rot decay fungi and American Society for Testing and Materials standard tests for inhibition of mould fungi and termites. Multi-component systems combining a borate base supplemented with either 0.1% azole or 0.5% thujaplicin, performed well against the two brown-rot fungi Postia placenta and Gloeophyllum trabeum; the white-rot fungus Coriolus versicolor; the three mould fungi Aspergillus niger, Penicillium chrysogenum, and Trichoderma viride; and the subterranean termite Reticulitermes flavipes (Kollar). It was concluded that for interior applications borate-based multi-component biocide systems can protect wood from decay fungi, mould fungi, and termites, and that a system containing thiabendazole provided protection at a lower retention than the other biocides in this study. Synergy was observed between the borate base and voriconazole in inhibition of mould.  相似文献   

12.
The resistance to fungal attack of wood plastic composites (WPCs) containing 40% polypropylene and 60% either pine, maple or oak, wt%/wt%, was examined. WPCs specimens were made using the hot press system. Resistance to decay was evaluated using soil block and agar tests. Test specimens were exposed to either white-rot fungi, Trametes versicolor or Phanerochaete chrysosporium, or the brown-rot fungi Gloeophyllum trabeum or Postia placenta for six or 12 weeks. Moisture content and weight loss were used to assess the extent of decay of WPCs. Rates of decay in WPCs exposed in soil-block tests were greater than those exposed in the agar. WPCs containing either maple or oak were more susceptible to fungal attack then those containing pine.  相似文献   

13.
Anti-fungal activities of two essential oils (peppermint oil and eucalyptus oil) and their main components (menthol and eucalyptol, respectively) against molds (Aspergillus niger, Penicillium chrysogenum, and Penicillium sp.) and a white-rot decay fungus (Trametes versicolor) identified from rubberwood surfaces were investigated. The broth dilution method and the agar diffusion technique were employed to determine the minimal inhibitory concentration (MIC) and the minimal fungicidal concentration (MFC) using the concentration of substances between 100 and 800 μl ml?1. Inhibitory effects of essential oils and their main components at the MICs against mold growth, fungal decay, and termite attack on rubberwood were further examined by means of the dip treatment method. It was found that MFC values against molds for all treatments examined were about 50–100 μl ml?1 higher than MIC values. Peppermint oil and menthol exhibited high fungistatic and fungicidal activities, with MICs of 300 μl ml?1 and 350 μl ml?1, respectively, against the test molds and the decay fungus. Eucalyptus oil and eucalyptol were also effective against these microbes but at higher concentrations of 600 μl ml?1 and 500 μl ml?1, respectively. Only peppermint oil at the MIC was capable of providing a complete protection from mold growth on rubberwood for up to 12 weeks at storage conditions of 25 °C and 100% RH. Both peppermint oil and eucalyptus oil at the MICs showed moderate resistance to fungal decay and high resistance to termite attack.  相似文献   

14.
Fast-growing plant wood Populus ussuriensis Kom, and Micheliamacclurel wood were respectively modified by formation of wood-polymer composite to improve their decay resistance. Two functional monomers, glycidyl methacrylate and ethylene glycol dimethacrylate, added with a few Azo-bis-isobutryonitrile as initiator, and maleic anhydride as catalyst, were first impregnated into wood cell lumen under a vacuum-pressure condition, and then in-situ polymerized into copolymers through a catalyst-thermal treatment. The decay resistances of untreated wood and wood-polymer composites were assessed by weight loss and compared by SEM observations. SEM and FTIR analysis indicated that the in-situ polymerized copolymers fully filled up wood cell lumen and also grafted onto wood cell walls, resulting in the blockage of passages for microorganisms and moisture to wood cell walls. Thus, the decay resistance of poplar wood-polymer composite and Micheliamacclurel wood-polymer composite against brown rot fungus and white rot fungus in terms of weight loss achieved 3.43–3.92% and 1.04–1.33%, improved 95.06–95.18% and 95.10–95.35% than those of untreated poplar wood and Micheliamacclurel wood, respectively; and also respectively higher than that of boron-treated wood. The SEM observations for the decayed poplar wood, Micheliamacclurel wood and their corresponding treated wood also showed the remarkable improvement of decay resistance of wood after such treatment, which effectively protected wood from degradation by fungi.  相似文献   

15.
In this study, we tested tetraethoxysilane and methyltriethoxysilane as modifying silicon-based compounds for their potential to limit boron leachability from modified wood and to increase biological durability of the wood against fungi and termites. Both the silane compounds were used in silane state where acidified ethanol was added and stirred at ambient temperature for 30 min. We used two different processes for preservative treatments: double treatment and single treatment. In double treatment, the specimens from sugi wood were first treated with boric acid at 1% concentration and subsequently treated with the silanes. In single treatment, boric acid was mixed with the silane compounds in the silane state yielding 1% boric acid concentration. Subsequent to the treatments, wood specimens were subjected to laboratory leaching tests, and leachates were analyzed for boron content with an inductively coupled plasma (ICP) spectrometry. ICP analyses showed that silane treatments were able to limit boron leaching from treated wood by about 40% in all cases for each silane compound. Wood specimens were then subjected to laboratory termite and decay resistance tests using the subterranean termites, Coptotermes formosanus, and the wood decaying fungi, Fomitopsis palustris and Trametes versicolor. Termite and fungal decay resistance tests revealed that resistance of modified wood with the silane and boron compounds increased when compared to untreated and boron-only treated wood specimens. More in-depth studies on the mechanisms of interactions between the silicon compounds, boron elements and wood components are in progress.  相似文献   

16.
Particleboard specimens produced by adding waste tire rubber particles were assayed against white- and brown-rot fungi and termites in laboratory conditions. Particleboards were manufactured from a mixture of pine and poplar particles bonded with two different resins (melamine/urea formaldehyde [MUF] and polyisocyanate [PI]) by adding waste tire rubber particles at three different levels (10%/90%, 20%/80%, and 30%/70% by weight of waste tire rubber/wood). The particleboard specimens with waste tire rubber were not generally resistant against four fungi tested. Only MUF-containing specimens showed considerably better performance in decay resistance tests using the brown-rot fungus, Postia placenta; however, addition of waste tire rubber into those specimens did not provide resistance in comparison with control specimens without tire rubber. Formosan termites were also able to degrade particleboard specimens with waste tire rubber.  相似文献   

17.
Biomass slurry fuel (BSF) production has recently been developed as a natural energy for the conversion of solid biomass into fuel. In addition to using fuel, filtrates from BSF production may also serve a chemical source with several organic compounds. There is an increasing interest in the research and application of biomass-based filtrates. In this study, fungicidal and termiticidal properties of filtrates from BSF production using sugi (Cryptomeria japonica) and acacia (Acacia mangium) wood were evaluated in laboratory decay and termite resistance tests. Wood blocks treated with the filtrates showed increased resistance against brown-rot fungus, Fomitopsis palustris. However the filtrates from sugi wood processed at 270 degrees C which contained less phenolic compounds than the other filtrates were effective against white-rot fungus, Trametes versicolor. Phenolic compounds of filtrates seemed to play a role in the decay resistance tests however the filtrates did not increase the durability of the wood blocks against subterranean termites Coptotermes formosanus. Despite high acetic and lactic acid content of the filtrates, vanillin content of the filtrates may have served as an additional food source and promoted termite attack. It can be concluded that filtrates with phenolic compounds from lignin degradation during BSF production can be considered for targeted inhibition of brown-rot.  相似文献   

18.
Termites often eliminate pathogens directly through mutual grooming, and are thereby prevent infections from entomopathogenic fungi. Our previous study confirmed that the antennae of Coptotermesformosanus sensitively responded to the musty odor of entomopathogenic fungi. However, it is unclear if this odor has any effect on termite behavior. The purpose of this study was to clarify the effects of fungal odor on termite behavior, especially on conidia removal. The musty odor was prepared as an aqueous solution by immersing conidia in distilled water. When untreated termites were mixed with fungal-odor-treated termites at a ratio of 4:1, mutual grooming and attack of treated termites were frequently observed. This indicated that the fungal odor triggered these behavioral responses. While some components of the fungal odor were found in all of the entomopathogenic fungi tested, the odor profiles differed among the isolates.  相似文献   

19.
The objective of this study was to evaluate the natural durability of five lesser-utilized wood species from Mozambique. Both laboratory methods and field tests were applied for assessing wood decay of muanga (Pericopsis angolensis), metil (Sterculia appendiculata), namuno (Acacia nigrescens), ncurri (Icuria dunensis), and ntholo (Pseudolachnostylis maprounaefolia). Laboratory tests involved soft-, brown-, and white-rot fungi and termites. Heart- and sapwood of ncurri and ntholo were exposed in above-ground field tests; additionally, all species were exposed to in-ground contact tests. The results indicated that namuno, muanga, ncurri, and ntholo are resistant to soft-, brown- and white-rot fungi and the termite species Reticulitermes grassea and Mastotermes darwiniensis. Comparatively, soft-rot caused more severe decay on the studied wood species than did basidiomycete fungi. The brown-rot fungi Coniophora puteana, Gloeophiyllum trabeum, and Postia placenta caused less decay on the tested species than did the white-rot Trametes versicolor. Metil was not resistant to any of the mentioned hazards. Therefore, this species is not recommendable for exterior use if untreated.  相似文献   

20.
This study examined the responses of two termite species, the Formosan subterranean termite, Coptotermes formosanus Shiraki, and the eastern subterranean termite, Reticulitermes flavipes (Kollar), to three types of wood decay fungi: a brown rot fungus, Gloeophyllum trabeum (Persoon: Fries) Murrill; a white rot fungus, Phanerochaete chrysosporium Burdsall; and a litter rot fungus, Marasmiellus troyanus (Murrill) Singer. We also examined the responses of termites to these three types of fungi grown on different substrates. For all three fungal species, both termite species showed a strong preference for fungus-infected sawdust over uninfected sawdust. In choice tests, both termite species preferred sawdust infected with either M. troyanus or P. chrysosporium over G. trabeum. However, termites did not show any preference for fungus-infected potato dextrose agar over uninfected potato dextrose agar. Tunneling activity of C. formosanus was greater in sand treated with methanol extracts of fungus-infected sawdust than in sand treated with extracts of uninfected sawdust. Because chemicals in the fungal extracts caused termites to tunnel further into treated sand than untreated sand, these chemicals could potentially be used to direct termite foraging toward bait stations in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号