首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effects of pH, temperature, aeration, and residence time on the continuous production of 4-ethyl-guaiacol (4-EG), which is one of the characteristic aroma components in soy sauce, by immobilized cells of the salt-tolerant yeast Candida versatilis were investigated using an airlift reactor. The optimum pH and temperature were about 4.0 and 30–33°C, respectively. The amount of 4-EG in the liquid was constant even during alterations of nitrogen/air ratio in the supplied gas. A large amount of 4-EG (over 20 ppm) was produced at a residence time from 5 to 28 h and 1–3 ppm of 4-EG, which was the optimum concentration in conventional soy souce, was produced at a shorter residence time of 0.5 h. The 4-EG production by immobilized C. versatilis cells using the airlift reactor was stable for 40 d. It was found that the immobilized cell method was effective for the production of 4-EG by C. versatilis cells.  相似文献   

3.
Summary Streptomyces rimosus cells were immobilized with urethane prepolymers and used in the production of oxytetracycline. Based on the criteria for oxytetracycline productivity, cell growth in gels, cell leakage from gels and mechanical strength of gel, a hydrophilic prepolymer, PU-1, the main chain of which was polyethylene glycol (molecular weight, approximately 1500) was employed as gel material among 11 kinds of urethane prepolymers. Use of glucose-free medium for cultivation of PU-1-entrapped cells increased the production rate of oxytetracycline and minimized cell leakage from the gels. When the gel-entrapped cells lost activity, treatment of the cell-entrapping gels with saline or 70% ethanol resulted in recovery of the oxytetracycline productivity. Continuous oxytetracycline fermentation using PU-1-entrapped growing cells was successfully achieved in air-bubbled reactor for at least 35 days with reactivation of the cells.  相似文献   

4.
Using a 50-l airlift bioreactor, for the effective production of tylosin from Streptomyces fradiae TM-224 using raw cornmeal as the energy source, various environmental factors were studied in flask cultures. The maximum tylosin concentration was obtained at 32 degrees C and pH between 7.0 and 7.5. When seed was inoculated after 24 h of culture, the maximum tylosin concentration, 5.7 g/l, was obtained after 4 days of culture. Various concentrations of raw cornmeal were tested to investigate the optimum initial concentration for the tylosin production. An initial raw cornmeal concentration of 80 g/l gave the highest tylosin concentration, 5.8 g/l, after 5 days of culture. Of the various nitrogen sources, soybean meal and fish meal were found to be the most effective for the production of tylosin. In particular, with the optimal mixing ratio, 12 g/l of soybean meal to 14 g/l of fish meal, 7.2 g/l of tylosin was obtained after 5 days of culture. To compare raw cornmeal and glucose for the production oftylosin in the 50-1 airlift bioreactor for 10 days, fed-batch cultures were carried out under the optimum culture conditions. When raw corn meal was used as the energy source, the tylosin production increased with increasing culture time. The maximum tylosin concentration after 10 days of culture was 13.5 g/l, with a product yield from raw cornmeal of 0.123 g/g of consumed carbon source, which was about 7.2 times higher than that obtained when glucose was used as the carbon source.  相似文献   

5.
The filamentous cyanobacterium,Scytonema sp. TISTR 8208, which produces a cyclic peptide antibiotic, was cultivated for 20 d in a seaweed-type bioreactor containing anchored polyurethan foam strips. Cells immobilized onto the foam strips produced the antibiotic for only several days, and the secreted antibiotic disappeared very rapidly from the medium. Cells accumulated the antibiotic intracellularly in a growth-related manner, and secreted it in the stationary phase. Since the antibiotic has a stable physico-chemical nature, the cells seem to take it up and metabolize it. When continuous cultivation was attempted, stable production of the antibiotic was maintained in the bioreactor for 16 d at a dilution rate of 0.01 h–1. Three times more antibiotic was produced in the continuous culture than in the batch culture by the 16th day.  相似文献   

6.
7.
Summary The optimum conditions for continuous alcohol fermentation of soy sauce with immobilized Zygosaccharomyces rouxii cells were investigated using an airlift reactor. The optimum pH and temperature of the fermentation were 4.5–5.5 and 25°–27.5° C, respectively. Ethanol content in the fermented liquid was increased with increasing height to diameter ratio of the reactor and the ratio of air to nitrogen in the supplied gas (total supplied gas: 0.08 vvm). A notable decrease in ethanol content was observed when only nitrogen gas was supplied. The products fermented by supplying air (0.02 vvm) had a higher conent of aroma components than that by supplying only nitrogen gas, and the aroma of the former products was similar to that of conventional soy sauce. This alcohol fermentation using an airlift reactor was continued for about 50 days without problems even if conditions such as residence time and aeration were altered.  相似文献   

8.
9.
Large-scale cultivation of murine bone marrow cells was accomplished in an airlift packed bed bioreactor system designed to mimic the in vivo bone marrow environment. The attachment-dependent stromal cell population, which provides the necessary microenvironment, including growth factors for subsequent hematopoietic activity, was first established within the bioreactor. This attachment-dependent cell growth occurred on the fiber-glass matrix packed in the annular region of the bioreactor. Once the stromal cell layer was established, fresh bone marrow cells were inoculated to initiate hematopoiesis. However, traditional culture medium was found to be inadequate for the initiation of hematopoiesis, but the use of stromal cell "conditioned" medium (with no exogenously added growth factors) yielded sustained cell production. The extent of stromal cell subculturing prior to inoculation into the bioreactor and the inoculation density were also important factors for the successful initiation of hematopoietic activity. A 500-mL perfusion culture experiment resulted in the production and harvest of 3.6 x 10(8) suspended bone marrow cells over the course of 11 weeks. (c) 1996 John Wiley & Sons, Inc.  相似文献   

10.
Summary Living Gluconobacter oxydans cells were attached on fibrous nylon carrier. Free gluconic acid was directly continuously produced in an aerated tubular immobilized-cell bioreactor for at least 6 months, with a volumetric productivity of at least 5 g/lh at 100 g/l substrate glucose and about 80 g/l product gluconic acid concentrations. The highest volumetric productivity in respect to glucose concentration was obtained with 175 g/l glucose, with about 120 g/l product gluconic acid level. With self-directing optimization procedure in respect to maximum product gluconic acid level, productivities as high as about 12–15 g/lh were obtained at relatively high substrate feed rate of 0.166 l/lh and relatively low aeration rate of 0.5 l/lmin. The highest glucose conversion of about 96% was obtained with a long residence time, at the lowest substrate feed rate used at a relatively low aeration rate, resulting however in a significant increase in ketogluconic acid production.  相似文献   

11.
Continuous L(+)-lactic acid production was carried out in an airlift bioreactor with immobilized R. oryzae in polyurethane foam cubes. In a pseudo-steady state, the productivity of lactic acid increased with increasing dilution rate or feeding glucose concentration. A double-layer reaction-diffusion model for the pseudo-steady state process was developed to describe the bioreaction system. Using independently determined model parameters, the model prediction agreed well with the experimental results. Therefore, the model can be employed to understand the fermentation behavior, and for the process design and optimization.  相似文献   

12.
Ryu SA  Kim CS  Kim HJ  Baek DH  Oh DK 《Biotechnology progress》2003,19(6):1643-1647
D-Tagatose was continuously produced using thermostable L-arabinose isomerase immobilized in alginate with D-galactose solution in a packed-bed bioreactor. Bead size, L/D (length/diameter) of reactor, dilution rate, total loaded enzyme amount, and substrate concentration were found to be optimal at 0.8 mm, 520/7 mm, 0.375 h(-1), 5.65 units, and 300 g/L, respectively. Under these conditions, the bioreactor produced about 145 g/L tagatose with an average productivity of 54 g tagatose/L x h and an average conversion yield of 48% (w/w). Operational stability of the immobilized enzyme was demonstrated, with a tagatose production half-life of 24 days.  相似文献   

13.
A mathematical model which describes ethanol formation in a horizontal tank reactor containing Saccharomyces cerevisiae immobilized in small beads of calcium alginate has been developed. The design equations combine flow dynamics of the reactor as well as product formation kinetics. The model was verified for 11 continuous experiments, where dilution rate, feed glucose concentration and bead volume fraction were varied. The model predicts effluent ethanol concentration and CO2 production rate within the experimental error. A simplification of the model is possible, when the feed glucose concentration does not exceed 150 kg/m3. The simplification results in an analytical solution of the design equation and hence can easily be applied for design purposes as well as for optimization studies.  相似文献   

14.
Continuous ethanol production in a three stage horizontal tank bioreactor (HTR) by yeast cells entrapped in Ca-alginate was about 30% higher than in a vertical type of bioreactor and reached 31 kg/(m3 · h) at 95% glucose utilization. Maximum ethanol productivity obtained was 41.2 kg/(m3 · h), however, with 38% of the glucose fed to the HTR being wasted. The higher performance of the HTR had been mainly accounted for the reduction of the adverse CO2 gas phase effect and the more pronounced plug-flow character. Glucose and ethanol profiles along the HTR revealed that 50–80% of the overall fermentation activity was present in the first stage. Within a test period of 23 d the HTR showed an excellent operational stability.Compared to other continuous ethanol production processes using entrapped yeast cells the HTR presented here belongs to the top ones.  相似文献   

15.
An external-loop airlift bioreactor, with a low ratio 2.9 of height-to-diameter of the riser and a ratio 6.6 of riser-to-downcomer diameter, was used to produce alpha-amylase from fermentation with dregs by Bacillus subtilis. The effects of gas flow rate and liquid volume on alpha-amylase production were investigated. After a 36-h fermentation time, an average of 432.3U/ml alpha-amylase activity was obtained under the conditions of liquid volume 8.5l and gas flow rate 1.2vvm for the first 12h of fermentation, 1.4vvm from 12 to 27h, and 1.2vvm from 27h to the end. The activity was higher than that obtained in shaking flasks (409.0U/ml) and in a mechanically stirred tank bioreactor (397.2U/ml) under optimized operating conditions. The fermentation cycle of the airlift bioreactor was shorter than the 48h required for the shaking flasks and close to the 36h of the mechanically stirred tank bioreactor. It was demonstrated that the external-loop airlift bioreactor could substitute for the traditional mechanically stirred tank bioreactor to produce alpha-amylase from fermentation by Bacillus subtilis with dregs.  相似文献   

16.
Summary The continuous production of hydrogen in a Nozzle Loop Bioreactor was investigated using immobilized Rhodospirillum rubum KS-301 with glucose as the growth-limiting substrate. The maximum hydrogen production rate in the experimental range was 91mL/h at dilution rate 0.4h-1, initial glucose concentration 5.4g/L, and circulation rate 70h-1 .  相似文献   

17.
The one-parameter-tanks-in-series model was found to be an adequate model for the characterization of flow dynamics in a horizontal immobilized cell reactor, when blue dextran was used as tracer. Isobutanol proved to be inadequate, because it diffused inside the beads and thus caused tailing in RTD. The CO2 evolution rate displayed the most pronounced effect on axial liquid dispersion. At high CO2 production rates and low dilution rates each stage of the reactor behaved like a well-mixed reactor. At lower CO2 evolution rates the number of tanks (N) related to the reactor increased up to 10. The medium flow rate affects axial dispersion to a minor degree. An increase of the dilution rate from 0.328 to 1.34 h?1 resulted in a slight rise of N from 3.5 to 5 at high CO2 production and from 4 to 7 at medium CO2 production rates. Variation in the bead hold up showed the same characteristic axial mixing behavior as reflected by changing the medium flow rate. The quantitative correlation between axial mixing and the most significant fermentation parameters (dilution rate, CO2 evolution rate and bead hold up) allow to develop an overall model, which besides kinetic expressions also contains terms related to the flow dynamics of the reactor. In the third part of this communication such a model will be presented and compared with actual fermentation data.  相似文献   

18.
A recombinant Saccharomyces cerevisiae C468/pGAC9 (ATCC 20690), which expresses Aspergillus awamori glucoamylase gene under the control of the yeast enolase I (ENO1) promoter and secretes glucoamylase into the extracellular medium, was used as a model system to investigate the effect of cell immobilization on bioreactor culture performance. Free suspension cultures in stirred-tank and airlift bioreactors confirmed inherent genetic instability of the recombinant yeast. An immobilized-cell-film airlift bioreactor was developed by employing cotton cloth sheets to immobilize the yeast cells by attachment. Enhanced enzyme productivity and production stability in the immobilized-cell system were observed. Experimental data indicated that the immobilized cells maintained a higher proportion of plasmid-bearing cells for longer periods under continuous operation. The higher plasmid maintenance with immobilized cells is possibly due to reduced specific growth rate and increased plasmid copy number. Double-selection pressure was used to select and maintain the recombinant yeast. The selected strain showed better production performance than the original strain. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 241-251, 1997.  相似文献   

19.
l-Malic acid is used extensively in the pharmaceutical industry and as a food additive. It is now produced on an industrial scale by the enzymatic conversion of fumaric acid using immobilized cells of Brevibacterium flavum. Recent improvements to this system, especially the use of x-carrageenan supports, have resulted in a continuous process capable of yielding 30 tonnes of l-malic acid per month.  相似文献   

20.
A new bioreactor (liquid-gas two-phase system) was devised for berberine-secreting Thalictrum minus cells immobilized in calcium alginate beads, which were alternately soaked in medium, and exposed to air. The highest yield of berberine (875 mg/l) was obtained by setting the cycle of medium supply and air supply for 30 seconds and 2 minutes, respectively, during a culture period of 30 days. Under such conditions of batch culture, the berberine productivity of immobilized cells was as high as that of freely suspended cells. Furthermore, the rate of berberine production by immobilized cells remained constant at a high value (50 mg/l/day) for a period of 60 days of semi-continuous culture achieved by renewal of medium at intervals of 10 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号