首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Within the Arthropoda, morphologies of neurons, the organization of neurons within neuropils and the occurrence of neuropils can be highly conserved and provide robust characters for phylogenetic analyses. The present paper reviews some features of insect and crustacean brains that speak against an entomostracan origin of the insects, contrary to received opinion. Neural organization in brain centres, comprising olfactory pathways, optic lobes and a central neuropil that is thought to play a cardinal role in multi-joint movement, support affinities between insects and malacostracan crustaceans.  相似文献   

2.
The compound eyes of adult stomatopod crustaceans have two to six ommatidial rows at the equator, called the midband, that are often specialized for color and polarization vision. Beneath the retina, this midband specialization is represented as enlarged optic lobe lamina cartridges and a hernia‐like expansion in the medulla. We studied how the optic lobe transforms from the larvae, which possess typical crustacean larval compound eyes without a specialized midband, through metamorphosis into the adults with the midband in a two midband‐row species Alima pacifica. Using histological staining, immunolabeling, and 3D reconstruction, we show that the last‐stage stomatopod larvae possess double‐retina eyes, in which the developing adult visual system forms adjacent to, but separate from, the larval visual system. Beneath the two retinas, the optic lobe also contains two sets of optic neuropils, comprising of a larval lamina, medulla, and lobula, as well as an adult lamina, medulla, and lobula. The larval eye and all larval optic neuropils degenerate and disappear approximately a week after metamorphosis. In stomatopods, the unique adult visual system and all optic neuropils develop alongside the larval system in the eyestalk of last‐stage larvae, where two visual systems and two independent visual processing pathways coexist. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 3–14, 2018  相似文献   

3.
Panorpa larvae possess stemmata (lateral ocelli), which have the structure of compound eyes, and stemma lamina and stemma medulla neuropils. A distinct lobula neuropil is lacking. The stemma neuropils have a columnar organization. They contain lamina monopolar cells, and both short and long visual fibers. All the identified larval monopolar neurons have radially arranged dendrites along the entire depth of the lamina neuropil and a single terminal arborization within the medulla (L1/L2-type). The terminals of visual fibers have short spiny lateral projections. Long fibers possess en passant synapses within the lamina. The same principles of organization of first and second order visual neuropils are found in Panorpa imagines. In contrast to the larvae, a lobula neuropil is present. Adults have monopolar cells of the L1-type that are similar to the L1-neurons found in Diptera. The columnar organization, the presence of short and long visual fibers, and lamina monopolar neurons are thus features common to both visual systems, viz., the larval (stemmata) and the imaginal (compound eyes).  相似文献   

4.
Summary The lobula descending neuron (LDN) of dipterous insects is a unique nerve cell (one on each side of the brain) that projects directly from the lobula complex of the optic lobes to neuropil in thoracic ganglia. In the supraoesophageal ganglia the LDN has two prominent groups of branches of which at least one is dendritic in nature. Postsynaptic branches are distributed in the lobula and some branches, the synaptic relations of which are not yet known, extend to the lobula plate. A second group of branches is found among dendrites of the descending neurons proper, in the lateral midbrain.The arborizations of LDN in the lobula (and lobula plate) map onto a retinotopic neuropil region subserving a posterior strip of the visual field of the compound eye. The arborizations in the lobula complex are extremely variable in size. The numbers of dendritic spines they possess vary greatly between left and right optic lobes of one animal, and between individual animals.  相似文献   

5.
Summary The uptake of [3H]-histamine into the retina and optic lobe of the locust, Schistocerca americana gregaria was studied by means of autoradiography at the light- and electron-microscopic levels. Light-microscopic autoradiography showed a significant accumulation of [3H]-histamine in several regions of the optic lobe. Dense accumulations of silver grains were concentrated along the medial border of the medullary neuropil and around the entire periphery of the lobula. No significant accumulations of grains were present within the retina or the neuropil zones of the lamina, medulla or lobula.Electron-microscopic autoradiography showed histamine-accumulating cells along the border of the medulla to exhibit electron density and morphology typical of glial cells. Labelled histamine was present within both glial cell bodies and their processes. In the region surrounding the neuropil of the lobula, [3H]-histamine was concentrated within fine glial processes wrapped around neuronal cell bodies and their axons. No neuronal cell bodies or axons showed accumulation of silver grains above background.These results are consistent with previous studies showing the glial uptake of amino acid and biogenic amine putative neurotransmitters. However, the lack of a demonstration of a specific uptake of histamine in neuropil zones makes it difficult to assess the role of histamine uptake in the inactivation of neurally released histamine in the locust visual system.  相似文献   

6.
Most insects possess an assemblage of midline neuropils in their protocerebrum called the central complex. Recent studies have identified comparable assemblages in the malacostracan protocerebrum. Studies of Drosophila melanogaster locomotory mutants suggest that in insects one role for the central complex might be to orchestrate limb actions. This is anecdotally supported by comparisons amongst insects suggesting that elaboration of central complex architecture correlates with complexity of limb motor repertoires. The present account describes immunocytochemical and neuroanatomical observations that reveal common design principles amongst midline neuropils in four arthropod clades, the hexapods, crustaceans, chilopods, and chelicerates and the absence of midline neuropils in diplopods. The chilopod midline neuropil, which is columnar and stratified and lacks chiasmal axons to the dorsal protocerebrum or connections to discrete satellite regions, may represent the plesiomorphous condition. The complete absence of a midline neuropil in diplopods supports previous neuroanatomical studies suggesting that the 'Myriapoda' are an artificial paraphyletic group. The columnar and layered arcuate midline neuropils of chelicerates are compared with columnar and layered midline neuropils of chilopods. No midline neuropil has been identified in a lophotrochozoan outgroup, the Polychaeta.  相似文献   

7.
Compared to research carried out on decapod crustaceans, the development of the visual system in representatives of the entomostracan crustaceans is poorly understood. However, the structural evolution of the arthropod visual system is an important topic in the new debate on arthropod relationships, and entomostracan crustaceans play a key role in this discussion. Hence, data on structure and ontogeny of the entomostracan visual system are likely to contribute new aspects to our understanding of arthropod phylogeny. Therefore, we explored the proliferation of neuronal stem cells (in vivo incorporation of bromodeoxyuridine) and the developmental expression of synaptic proteins (immunohistochemistry against synapsins) in the developing optic neuropils of the brine shrimp Artemia salina Linnaeus, 1758 (Crustacea, Entomostraca, Branchiopoda, Anostraca) from hatching to adulthood. The morphology of the adult visual system was examined in serial sections of plastic embedded specimens. Our results indicate that the cellular material that gives rise to the visual system (compound eyes and two optic ganglia) is contributed by the mitotic activity of neuronal stem cells that are arranged in three band-shaped proliferation zones. Synapsin-like immunoreactivity in the lamina ganglionaris and the medulla externa initiated only after the anlagen of the compound eyes had already formed, suggesting that the emergence of the two optic neuropils lags behind the proliferative action of these stem cells. Neurogenesis in A. salina is compared to similar processes in malacostracan crustaceans and possible phylogenetic implications are discussed.  相似文献   

8.
Serotonin-like immunoreactivity in the optic lobes of three insect species   总被引:4,自引:0,他引:4  
The cellular localization of 5-HT in the optic lobes of three insect species was assayed with the use of antibodies raised against 5-HT. In Schistocerca, Periplaneta, and Calliphora all neuropil regions of the optic lobe, the lamina, medulla and lobula, contain 5-HT-immunoreactive varicose fibres in different patterns, like columns and layers. Such fibres also connect the lobula to neuropil in the lateral protocerebrum. In Calliphora also 5-HT-positive fibres of the medulla and lobula plate have projections to the lateral protocerebrum, whereas the origin of the lamina fibres is not certain. In all species the processes displaying 5-HT-like immunoreactivity appear to be derived from a relatively small number of cell bodies, each neuron thus having processes over a large volume of the neuropil of the optic lobe in different layers.  相似文献   

9.
Compared to research carried out on decapod crustaceans, the development of the visual system in representatives of the entomostracan crustaceans is poorly understood. However, the structural evolution of the arthropod visual system is an important topic in the new debate on arthropod relationships, and entomostracan crustaceans play a key role in this discussion. Hence, data on structure and ontogeny of the entomostracan visual system are likely to contribute new aspects to our understanding of arthropod phylogeny. Therefore, we explored the proliferation of neuronal stem cells (in vivo incorporation of bromodeoxyuridine) and the developmental expression of synaptic proteins (immunohistochemistry against synapsins) in the developing optic neuropils of the brine shrimp Artemia salina Linnaeus, 1758 (Crustacea, Entomostraca, Branchiopoda, Anostraca) from hatching to adulthood. The morphology of the adult visual system was examined in serial sections of plastic embedded specimens. Our results indicate that the cellular material that gives rise to the visual system (compound eyes and two optic ganglia) is contributed by the mitotic activity of neuronal stem cells that are arranged in three band‐shaped proliferation zones. Synapsin‐like immunoreactivity in the lamina ganglionaris and the medulla externa initiated only after the anlagen of the compound eyes had already formed, suggesting that the emergence of the two optic neuropils lags behind the proliferative action of these stem cells. Neurogenesis in A. salina is compared to similar processes in malacostracan crustaceans and possible phylogenetic implications are discussed. © 2002 Wiley Periodicals, Inc. J Neurobiol 52: 117–132, 2002  相似文献   

10.
11.
The brain anatomy of Niphargus puteanus and Orchestia cavimana, two amphipod species with different lifestyles, has been studied using a variety of recent techniques. The general aspects of the brain anatomy of both species correspond to those of other malacostracans. However, both species lack hemiellipsoid bodies. Furthermore, related to their lifestyle certain differences have been observed. The aquatic subterranean species N. puteanus lacks eye structures, the optic nerve, and the two outer optic neuropils lamina and medulla. Only partial remains of the lobula have been detected. In contrast to this, the central complex in the protocerebrum and the olfactory glomeruli in the deutocerebrum are well differentiated. The terrestrial species Orchestia cavimana shows a reduced first antenna, the absence of olfactory neuropils in the deutocerebrum, and a reduction of the olfactory globular tract. The characteristics in defining the hemiellipsoid bodies are critically discussed. Contradictions about presence or absence of this neuropil are due to different conceptualizations. A comparison with other crustaceans that live in dark environments reveal similar patterns of optic system reduction, but to different degrees following a centripetal pattern. Retaining the olfactory system seems a general problem of terrestrialization in crustaceans with the notable exception of terrestrial hermit crabs.  相似文献   

12.
Summary The pigment-dispersing hormone (PDH) family of neuropeptides comprises a series of closely related octadecapeptides, isolated from different species of crustaceans and insects, which can be demonstrated immunocytochemically in neurons in the central nervous system and optic lobes of some representatives of these groups (Rao and Riehm 1989). In this investigation we have extended these immunocytochemical studies to include the blowfly Phormia terraenovae and the cockroach Leucophaea maderae. In the former species tissue extracts were also tested in a bioassay: extracts of blowfly brains exhibited PDH-like biological activity, causing melanophore pigment dispersion in destalked (eyestalkless) specimens of the fiddler crab Uca pugilator. Using standard immunocytochemical techniques, we could demonstrate a small number of pigment-dispersing hormone-immunoreactive (PDH-IR) neurons innervating optic lobe neuropil in the blowfly and the cockroach. In the blowfly the cell bodies of these neurons are located at the anterior base of the medulla. At least eight PDH-IR cell bodies of two size classes can be distinguished: 4 larger and 4 smaller. Branching immunoreactive fibers invade three layers in the medulla neuropil, and one stratum distal and one proximal to the lamina synaptic layer. A few fibers can also be seen invading the basal lobula and the lobula plate. The fibers distal to the lamina appear to be derived from two of the large PDH-IR cell bodies which also send processes into the medulla. These neurons share many features in their laminamedulla morphology with the serotonin immunoreactive neurons LBO-5HT described earlier (see Nässel 1988). It could be demonstrated by immunocytochemical double labeling that the serotonin and PDH immunoreactivities are located in two separate sets of neurons. In the cockroach optic lobe PDH-IR processes were found to invade the lamina synaptic region and form a diffuse distribution in the medulla. The numerous cell bodies of the lamina-medulla cells in the cockroach are located basal to the lamina in two clusters. Additional PDH-IR cell bodies could be found at the anterior base of the medulla. The distribution and morphology of serotonin-immunoreactive neurons in the cockroach lamina was found to be very similar to the PDH-IR ones. It is hence tempting to speculate that in both species the PDH-and serotonin-immunoreactive neurons are functionally coupled with common follower neurons. These neurons may be candidates for regulating large numbers of units in the visual system. In the flies photoreceptor properties may be regulated by action of the two set of neurons at sites peripheral to the lamina synaptic layer, possibly by paracrine release of messengers.  相似文献   

13.
Summary The structure of ommatidia at the dorsal eye margin of the fly, Calliphora erythrocephala is specialized for the detection of the e-vector of polarized light. Marginal zone ommatidia are distinguished by R7/R8 receptor cells with large-diameter, short, untwisted rhabdomeres and long axons to the medulla. The arrangement of the R7 microvillar directions along the marginal zone is fan-shaped. Ommatidia lining the dorsal and frontal edge of the eye lack primary screening pigments and have foreshortened crystalline cones. The marginal ommatidia from each eye view a strip that is 5 °–20 ° contralateral to the fly's longitudinal axis and that coincides with the outer boundaries of the binocular overlap.Cobalt injection into the retina demonstrates that photoreceptor axons arising from marginal ommatidia define a special area of marginal neuropil in the second visual neuropil, the medulla. Small-field neurons arising from the marginal medulla area define, in turn, a special area of marginal neuropil in the two deepest visual neuropils, the lobula and the lobula plate. From these arise local assemblies of columnar neurons that relay the marginal zones of one optic lobe to equivalent areas of the opposite lobe and to midbrain regions from which arise descending neurons destined for the the thoracic ganglia.Optically, the marginal zone of the retina represents the lateral edge of a larger area of ommatidia involved in dorsofrontal binocular overlap. This binocularity area is also represented by special arrangements of columnar neurons, which map the binocularity area of one eye into the lobula beneath the opposite eye. Another type of binocularity neuron terminates in the midbrain.These neuronal arrangements suggest two novel features of the insect optic lobes and brain: (1) Marginal neurons that directly connect the left and right optic lobes imply that each lobe receives a common input from areas of the left and right eye, specialized for detecting the pattern of polarized light. (2) Information about the e-vector pattern of sky-light polarization may be integrated with binocular and monocular pathways at the level of descending neurons leading to thoracic motor neuropil.  相似文献   

14.
A neuroanatomical screening of a collection of P-element mutagenized flies has been carried out with the aim of finding new mutants affecting the optic lobe of the adult brain in Drosophila melanogaster. We have identified a new gene that is involved in the development of the adult axon array in the optic ganglia and in the ommatidia assembly. We have named this locus visual system disorganizer (vid). Reversional mutagenesis demonstrated that the vid mutant was the result of a P-element insertion in the Drosophila genome and allowed us to generate independent alleles, some of which resulted in semilethality, like the vid original mutant, while the others were completely lethal. A genetic somatic mosaic analysis indicated that the vid gene is required in the eye for its normal development by inductive effects. This analysis also suggests an inductive effect of the vid gene on the distal portion of the optic lobe, particularly the lamina and the first optic chiasma. Moreover, the absence of mutant phenotype in the proximal region of the optic ganglia, including the medulla, the second optic chiasma, and the lobula complex underlying mosaic eyes, is suggestive of an autonomously acting mechanism of the vid gene in the optic lobe. The complete or partial lethality generated by different mutations at the vid locus suggests that this gene's role may not be limited to the visual system, but may also affect a vital function during Drosophila development.  相似文献   

15.
Although the behavioral repertoire of crustaceans is largely guided by visual information their visual nervous system has been little explored. In search for central mechanisms of visual integration, this study was aimed at identifying and characterizing brain neurons in the crab involved in binocular visual processing. The study was performed in the intact animal, by recording intracellularly the response to visual stimuli of neurons from one of the two optic lobes. Identified neurons recorded from the medulla (second optic neuropil), which include sustaining neurons, dimming neurons, depolarizing and hyperpolarizing tonic neurons and on-off neurons, all presented exclusively monocular (ipsilateral) responses. In contrast, all wide field movement detector neurons recorded from the lobula (third optic neuropil) responded to moving stimuli presented to the ipsilateral and to the contralateral eye. In these cells, the responses evoked by ipsilateral or contralateral stimulation were almost identical, as revealed by analysing the number and amplitude of the elicited postsynaptic potentials and spikes, and the ability to habituate upon repeated visual stimulation. The results demonstrate that in crustaceans important binocular processing takes place at the level of the lobula.  相似文献   

16.
The distribution of neuropeptide Y (NPY)-like immunoreactivity and its colocalization with FMRFamide were investigated in the optic lobe and peduncle complex of the octopus ( Octopus vulgaris) by using immunohistochemical techniques. In the optic lobe cortex, NPY-immunoreactive (NPY-IR) fibers were observed in the plexiform layer, although no NPY-IR somata were observed in the outer or inner granular cell layers. In the optic lobe medulla, NPY-IR somata were seen in the cell islands, and abundant NPY-IR varicose fibers were observed in the neuropil. Most of the NPY-IR structures in the medulla showed FMRFamide-like immunoreactivity. In the peduncle lobe, abundant NPY-IR and FMRFamide-IR (NPY/FMRF-IR) varicose fibers were seen in the basal zone neuropil of the peduncle lobe. In the olfactory lobe, NPY/FMRF-IR varicose fibers were also abundant in the neuropil of the three lobules. NPY/FMRF-IR somata, with processes running to various neuropils, were scattered in the median and posterior lobules. In the optic gland, many NPY/FMRF-IR varicose fibers formed a honeycomb pattern. These observations suggest that NPY/FMRF-IR neurons in the optic lobes participate in the modulation of visual information and that those in the optic gland are involved in the regulation of endocrine function.  相似文献   

17.
The optic lobes of Diptera have been examined by variants of the Golgi-Colonnier selective staining techniques and by reduced silver procedures. All, bar one, of the elements described by the earlier authors (Vigier 1908; Zawarzin 1913; Cajal & Sanchez 1915) have been seen, in part or in their entirely, in these preparations. Many other forms, hitherto unrecognized, have been found. Their perpendicular topographical relationships have been reconstructed in the optic lobe regions. Some lateral relationships have also been reconstructed between elements in regions whose columnar arrangement is clearly discernible in Golgi preparations; these include the lamina and the medulla. In the Diptera the projection pattern of the retina mosaic into the lamina neuropil involves complex chiasmata between the two regions (Braitenberg 1967); these have been confirmed from these species. The retina-lamina mosaic is, essentially, homotopically preserved in the columnar medulla, via long visual fibres and monopolar cells. The medullary mosaic is preserved through its strata by transmedullary cells and the longest small-field amacrine cells. The mosaic is projected to the two regions of the lobula complex by class I cells (see part I). The organization of the tangential cell processes suggests that some of them may interact with large or whole field aggragates of the relayed retinal mosaic. Others, especially in the lobula, may interact with small oval or narrow strip-field aggragates. Although there are many differences of neural form and number of neurons between species, both the Lepidoptera and Diptera have the same fundamental plan of neuroarchitecture.  相似文献   

18.
Summary The larval and early pupal development of the optic lobes in Drosophila is described qualitatively and quantitatively using [3H]thymidine autoradiography on 2-m plastic sections. The optic lobes develop from 30–40 precursor cells present in each hemisphere of the freshly hatched larva. During the first and second larval instars, these cells develop to neuroblasts arranged in two epithelial optic anlagen. In the third larval instar and in the early pupa these neuroblasts generate the cells of the imaginal optic lobes at discrete proliferation zones, which can be correlated with individual visual neuropils.The different neuropils as well as the repetitive elements of each neuropil are generated in a defined temporal sequence. Cells of the medulla are the first to become postmitotic with the onset of the third larval instar, followed by cells of the lobula complex and finally of the lamina at about the middle of the third instar. The elements of each neuropil connected to the most posterior part of the retina are generated first, elements corresponding to the most anterior retina are generated last.The proliferation pattern of neuroblasts into ganglion mother cells and ganglion cells is likely to include equal as well as unequal divisions of neuroblasts, followed by one or two generations of ganglion mother cells. For the lamina the proliferation pattern and its temporal coordination with the differentiation of the retina are shown.  相似文献   

19.
Brain morphogenesis depends on the maintenance of boundaries between populations of non-intermingling cells. We used molecular markers to characterize a boundary within the optic lobe of the Drosophila brain and found that Slit and the Robo family of receptors, well-known regulators of axon guidance and neuronal migration, inhibit the mixing of adjacent cell populations in the developing optic lobe. Our data suggest that Slit is needed in the lamina to prevent inappropriate invasion of Robo-expressing neurons from the lobula cortex. We show that Slit protein surrounds lamina glia, while the distal cell neurons in the lobula cortex express all three Drosophila Robos. We examine the function of these proteins in the visual system by isolating a novel allele of slit that preferentially disrupts visual system expression of Slit and by creating transgenic RNA interference flies to inhibit the function of each Drosophila Robo in a tissue-specific fashion. We find that loss of Slit or simultaneous knockdown of Robo, Robo2 and Robo3 causes distal cell neurons to invade the lamina, resulting in cell mixing across the lamina/lobula cortex boundary. This boundary disruption appears to lead to alterations in patterns of axon navigation in the visual system. We propose that Slit and Robo-family proteins act to maintain the distinct cellular composition of the lamina and the lobula cortex.  相似文献   

20.
Butterflies have sophisticated color vision. While the spectral organization of the compound eye has been well characterized in the Japanese yellow swallowtail butterfly, Papilio xuthus, neural mechanisms underlying its color vision are largely unexplored. Towards a better understanding of signal processing in the visual system of P. xuthus, we used immunocytochemical techniques to analyze the distribution of transmitter candidates, namely, histamine, serotonin, tyramine and γ-aminobutyric acid (GABA). Photoreceptor terminals in the lamina and medulla exhibited histamine immunoreactivity as demonstrated in other insects. The anti-histamine antiserum also labeled a few large medulla neurons. Medulla intrinsic neurons and centrifugal neurons projecting to the lamina showed serotonin immunoreactivity. Tyramine immunostaining was detected in a subset of large monopolar cells (LMCs) in the lamina, transmedullary neurons projecting to the lobula plate, and cell bodies surrounding the first optic chiasma. An anti-GABA antiserum labeled a subset of LMCs and populations of columnar and tangential neurons surrounding the medulla. Each of the four antisera also labeled a few centrifugal neurons that innervate the lobula complex from the central brain, suggesting that they have neuromodulatory roles. A distinctive feature we found in this study is the possibility that tyramine and GABA act as transmitters in LMCs of P. xuthus, which has not been reported in any other insects so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号