首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mimosa pigra L. is a serious weed of wetlands of Australia, Asia and Africa. A suite of established biocontrol agents have been introduced in Australia and some Asian countries, but better control is needed. Nesaecrepida infuscata (Schaeffer) (Coleoptera: Chrysomelidae) is a common insect on M. pigra in tropical America. The larvae develop on the roots while the adults feed on the leaves. As both roots and leaves of M. pigra are relatively undamaged in the introduced range, this species has potential to limit the growth, survival and seed production. Furthermore, it is abundant in the dry season and so inflicts damage when most other agents are not active. In host specificity tests, larvae did not develop on any of the 65 test plant species other than M. pigra. Adult feeding on test plant species other than M. pigra was minimal. Based on these results, this insect has been released in Australia.  相似文献   

2.
Adult oviposition preferences are expected to correlate with host plant suitability for the development of their offspring. For most lepidopteran species, this is particularly important as the hatching neonate larvae of many species are relatively immobile. Thus, the site of oviposition chosen by a female adult can greatly influence the probability of survival for her offspring. In the present study, we investigated the oviposition preference of adult Trichoplusia ni moths for six plant species to determine whether they could accurately rank the suitability of the plants for larval development. We also compared oviposition preferences to neonate larval acceptance and preference to determine whether the adult host range matched that of larval diet breath. Our results indicate that in two-choice and no-choice tests adult T. ni were able to rank the plants accurately, with the exception of anise hyssop. However, when given a choice of all six plants together, they laid more eggs on a plant that was not suitable for larval survival. Larvae accepted and fed on all plants in no-choice tests, and accurately ranked them according to larval performance. We conclude that neonate larvae are better able than adults to rank plants according to larval performance, and that larval diet breadth is wider than the range of plants accepted by adults. We also provide a discussion of the reduced accuracy of adult oviposition preference with increased plant choices.  相似文献   

3.
L. Fornasari 《BioControl》1997,42(4):605-617
Aphthona chinchihi Chen was collected in China feeding on leafy spurge (Euphorbia esula L.). Studies were conducted on its host specificity in the laboratory, using field collected adults and their progeny.Aphthona chinchihi can effectively complement the impact of the other natural enemies of leafy spurge established from Europe in the U.S.A. and Canada. The adults feed on leaves and shoots and the larvae, which cause the main damage to the plant, feed on the hypogeous portion of the plant, seriously stressing the plant and preventing its vegetative spread. The host range ofA. chinchihi was studied with tests on adult feeding and oviposition, larval survival and host suitability, using 40 plant species or varieties distributed in 12 families. The experiments demonstrated that it has a high level of specificity. This flea beetle completed its life cycle only on leafy spurge. Also, because of its ecological valence,A. chinchihi has a very good potential as a biocontrol agent in North America.  相似文献   

4.
Current advancements in the study of the theoretical basis of species interactions are helping scientists understand the basic parameters governing the dynamics of the interactions between generalist herbivores and their target plants. In practice, however, both inter- and intra-specific interactions between plants (as well as between herbivores and plants) within multispecies systems that are under the influence of interrelated biotic and abiotic variables are difficult to predict. Here, we discuss our findings on the effect of simulated herbivory on Mimosa pigra L. leaves on seedling survivability. In Malaysia, M. pigra, a semi-aquatic invasive plant introduced from the South American region, is already creating an ecological problem, especially in wetland habitats. To better understand the impact of herbivores on the M. pigra population, a simulated experiment of the herbivory effect on Mimosa seedlings was conducted. This experiment combined two treatments of simulated herbivory on the leaves of established Mimosa seedlings, that is, a two-level intensity treatment (50 and 100 % defoliation) and a seven-level frequency treatment (one to seven defoliations). The data suggest that Mimosa is highly resilient against herbivory. This plant was able to compensate for repeated losses, thus suggesting that the introduction of herbivores in an effort to totally eradicate the Mimosa population is unlikely to be successful.  相似文献   

5.
Life history traits of herbivores are highly influenced by the quality of their hosts, i.e., the composition of primary and secondary plant metabolites. In holometabolous insects, larvae and adults may face different host plants, which differ in quality. It has been hypothesised that adult fitness is either highest when larval and adult environmental conditions match (environmental matching) or it may be mainly determined by optimal larval conditions (silver spoon effect). Alternatively, the adult stage may be most decisive for the actual fitness, independent of larval food exposure, due to adult compensation ability. To determine the influence of constant versus changing larval and adult host plant experiences on growth performance, fitness and feeding preferences, we carried out a match–mismatch experiment using the mustard leaf beetle, Phaedon cochleariae. Larvae and adults were either constantly reared on watercress (natural host) or cabbage (crop plant) or were switched after metamorphosis to the other host. Growth, reproductive traits and feeding preferences were determined repeatedly over lifetime and host plant quality traits analysed. Differences in the host quality led to differences in the development time and female reproduction. Egg numbers were significantly influenced by the host plant species experienced by the adults. Thus, adults were able to compensate for poor larval conditions. Likewise, the current host experience was most decisive for feeding preferences; in adult beetles a feeding preference was shaped regardless of the larval host plant. Larvae or adults reared on the more nutritious host, cabbage, showed a higher preference for this host. Hence, beetles most likely develop a preference when gaining a direct positive feedback in terms of an improved performance, whereby the current experience matters the most. Highly nutritious crop plants may be, in consequence, all the more exploited by potential pests that may show a high plasticity in reproduction and feeding preferences.  相似文献   

6.
Estimating the relative suitability of different host plant species for herbivores is usually based on survival and growth parameters, neglecting other parameters such as resistance traits. Adding further complexity, host plant suitability may depend on environmental temperature. We here use the oligophagous pierid butterfly Pieris napi to investigate effects of temperature (during both the larval and the adult stage) and larval host plant species (Alliaria petiolata, Cardamine pratensis and Sinapis alba) on life history and adult stress resistance traits (resistance to desiccation and starvation). Environmental temperature affected all developmental traits: at the lower temperature development time and body mass increased. Temperature also affected adult stress resistance: desiccation and starvation resistance were higher at the lower adult temperature. When the same temperatures were used during larval development, effects on adult stress resistance traits were in the opposite direction. Host plants affected life history (larger body mass and faster development in larvae fed S. alba) and stress resistance traits (best performance in larvae fed A. petiolata) differently. Thus, the relative suitability of a host plant depended on the trait of the herbivore that is focused on and may be subject to local selection pressures. Although interactions with temperature were present for all traits, effect sizes were generally small.  相似文献   

7.
Herbivores have developed diverse strategies to manipulate host plants for their own benefits. The gall induction by the maize orange leafhopper Cicadulina bipunctata is different from that by other gall-inducing insects in that the galls are induced not on feeding sites but appear on distant, newly developing leaves. In addition, adult C. bipunctata are highly mobile and seldom feed on gall tissue that they have induced. These mean that the gall induction by C. bipunctata is unlikely to contribute to the fitness of the inducer itself. The objective of this study was to determine whether manipulation of the host plant by this leafhopper has a subsequent benefit to offspring. Adults feeding on maize seedlings caused a partial change in the glucose content and a remarkable change in the accumulation of free amino acids in the gall tissue. Increases in emergence and developmental rates were observed in nymphs feeding on gall tissue induced by prior adult feeding. Such improvements were not evident in nymphs feeding on a C. bipunctata-resistant variety, which rarely displays galls after C. bipunctata feeding, nor on maize seedlings previously foraged by another leafhopper, Psammotettix striatus. The results indicate that gall tissue induced by adult C. bipunctata contribute to better performance of its offspring through improvement of the nutritional components of host plants.  相似文献   

8.
Foreign surveys in China discovered a defoliating insect species feeding on the leaves of Chinese tallowtree (Triadica sebifera), an invasive weed of the southeastern U.S.A. The life history of this species, Sauris nr. purpurotincta (Lepidoptera: Geometridae), was examined and larval no-choice and adult multiple-choice host range tests were conducted in quarantine to evaluate their suitability for biological control of Chinese tallowtree. The results indicated that the larvae have five instars and require approximately 22 days to complete development to the adult stage. Host range tests indicated that the larvae could not feed and complete development on most species tested. However, 40% of the larvae survived when fed leaves of Hippomane mancinella, a state-listed endangered species in Florida, and all larvae survived when fed Morella cerifera, a common native species of the southeastern U.S.A. Multiple-choice oviposition tests indicated eggs were laid on leaves of both a south Florida native plant Gymnanthes lucida and Chinese tallowtree. Considering this broad host range, this species will not be considered further for biological control of Chinese tallowtree in the U.S.A.  相似文献   

9.
《Journal of Asia》2022,25(3):101971
The symbiotic relationship between plants and arbuscular mycorrhizal fungi (AMF) improves plant growth and increases its resistance to pests and diseases. Mycorrhizal fungi are among the specialized fungi associated with the rhizosphere and are completely dependent on plant organic carbon. In this research tomato, Solanum lycopersicum L. was used as the host plant to evaluate the interaction effects between inoculation of tomato plant with AMF and feeding of tomato leaf miner, Tuta absoluta (Meyrick). In addition, plant growth parameters and growth rate of insect were assessed. The mycorrhizal treatment included a mixture of four fungal species (Funneliformis mosseae, Rhizophagus intraradices, R. irregularis and Glomus iranicus). The results of the experiment showed that tomato plant roots were well colonized (66.29%) by AMF and there was a significant mutual relationship between the insects feeding on the plants and the fungi. Feeding by the insects on plants inoculated with the fungus increased percentage of colonization by AMF in plants infested with the insect as compared to the control plants. The results also indicated that growth parameters and phosphorus content of the plants inoculated with fungi significantly increased compared to the control group. Moreover, significantly lower growth rate and consumption index observed in the T. absoluta larvae were fed on the leaves of plants treated with AMF compared to leaves of plants not inoculated with AMF.  相似文献   

10.
Since its introduction into southern Florida at the beginning of this century, the Australian paperbark tree,Melaleuca quinquenervia (Cav.) S. T. Blake, has become a major economic and environmental pest. A project to develop biological control agents for this tree in Australia began in 1986. Among a number of potential agents, a defoliating sawfly,Lophyrotoma zonalis (Rohwer) (Hymenoptera: Pergidae), was selected for further study. The larvae of this sawfly are conspicuous defoliators ofMelaleuca trees in northern Queensland. We collected these sawflies from Cairns to Mackay in northern Queensland, and they are also known from the Northern Territory and New Guinea. The life-cycle from egg to adult takes about 12 weeks. The egg, larval and pupal stages are parasitized by dipteran and hymenopteran parasites. We conducted 2234 larval no-choice feeding tests on 46 plant species from 20 families. Although feeding occurred on 35 of these plant species,M. quinquenervia and its close relative,M. leucadendra (L.) L., were preferred. In oviposition tests, larvae only emerged from egg cases laid onM. quinquenervia andM. leucadendra. Our extensive field surveys of nearly 70 tree species foundL. zonalis eggs and larvae only on several closely relatedMelaleuca species. The potential effectiveness of this sawfly as a biocontrol agent is discussed and estimated using the Goeden-Harris scoring system. Quarantine studies of this insect began in Florida in early 1994.  相似文献   

11.
We present a study of habitat use, oviposition plant choice, and food plant suitability for the checkerspot butterfly Melitaea athalia Rottemburg (Lepidoptera: Nymphalidae) in Åland, Finland. We found that in Åland, unlike in the mainland of Finland and many parts of its range, M. athalia flies mainly in open meadows. When offered an array of plants in a large (32 × 26 m) field cage, they predominately oviposited upon Veronica chamaedrys L., V. spicata L. and Plantago lanceolata L. (Plantaginaceae), which grow in open meadows. The relative abundance of the butterfly in Åland, and its habitat and host plant use there, may reflect local adaptation to land use practices and geology that maintain clusters of small open meadows with little successional change. At the scale of a plant patch, preferred species were used as frequently in mixed species patches as in mono-specific patches, and more oviposition occurred in open than in grassy patches. All of the host plants used by M. athalia are defended by iridoid glycosides (IGs). However, oviposition choice among species and among individual plants within species was largely independent of IG concentration. This contrast with the more discerning congener, M. cinxia, supports the idea that host discrimination decreases with increasing host range. Finally, although the adult butterflies chose specific plant species for oviposition, as larvae they performed well on twelve out of thirteen species of plants, including both known hosts and related novel plants that occur in Åland, indicating a much wider range of larval food plant species than adult oviposition species.  相似文献   

12.
Macfadyena unguis-cati (L.) Gentry (Bignoniaceae) was introduced as an ornamental in South Africa, but is fast becoming an important invasive plant in many areas. It is difficult to control the plant chemically and mechanically. The first biocontrol agent, the chrysomelid Charidotis auroguttata (Boheman), has been released. It established at some release sites, but numbers have so far remained low. Additional biocontrol agents were sought to augment C. auroguttata. The potential host ranges of two foliage feeding lace bugs, Carvalhotingis visenda (Drake and Hambleton) and C. hollandi (Drake) (Hemiptera: Tingidae) were evaluated on the basis of nymphal no-choice and adult multi-choice tests involving 23 plant species in 11 families. In no-choice tests, nymphs of both species were able to survive and complete development on M. unguis-cati only, and adults of both species only fed and oviposited on M. unguis-cati during the adult multi-choice tests. Host specificity tests thus confirm that the tingids are highly host specific biocontrol agents, and will not pose risk to any non-target plants in South Africa. A study to determine the potential impact of C. hollandi nymphal feeding on M. unguis-cati showed a significant decrease in the chlorophyll contents of leaves when compared to those of control plants. These studies indicate that, once released, the two lace bug species could contribute significantly to the biological control of M. unguis-cati in South Africa.  相似文献   

13.
Exotic pathogen invasions can change host eco-evolutionary interactions and possibly create an evolutionary trap when the pathogen generates mismatches between developmental phenology and reproductive cues. Taylor’s checkerspot butterfly (Euphydryas editha taylori), is an endangered species of western North America with 80 % of the extant populations dependent on an exotic host, Plantago lanceolata. Survey of occupied, recently extinct, and unsuccessful butterfly reintroduction sites spanning 4° of latitude revealed widespread disease on P. lanceolata caused by Pyrenopeziza plantaginis. This fungal pathogen, new to North America, reduces the standing crop of P. lanceolata foliage throughout the winter post-diapause larval feeding period. However, disease is absent when adult butterflies and pre-diapause larvae are active. Diseased plants were frequent in Taylor’s checkerspot populations with a history of persistence, but >90 % of the host plants in these populations had initiated new leaves within the first few weeks of post-diapause larval feeding. Conversely, host plants in recently extinct and unsuccessfully reintroduced populations were severely diseased, >66 % mean foliage necrosis/plant, and <23 % had initiated new leaves. Feeding choice trials with 25 larvae indicated that new leaves were strongly and consistently preferred by post-diapause larvae over all other available leaf types, both diseased and non-diseased. Because the influence of disease on post-diapause larval food resources is developmentally disassociated from oviposition, P. plantaginis invasion appears to have triggered an evolutionary trap for Plantago-dependent populations of Taylor’s checkerspot.  相似文献   

14.
The oviposition and feeding preferences ofCoelocephalapion aculeatum Fall (Coleoptera: Apionidae), a host specific florivore ofMimosa pigra L. (Mimosaceae), were studied in relation to conspecific damage to its hostplant. Adults ofC. aculeatum cease ovipositing in inflorescences when the egg load reaches a number consistent with the larval carrying capacity of the inflorescence. The basis for this oviposition deterrence was examined by offering inflorescences damaged by adult feeding alone, larval feeding alone and a combination of adult feeding and oviposition. Adults preferred to oviposit on inflorescences which are not damaged by either adult feeding, larval feeding, or oviposition. No evidence for the existence of an oviposition deterring pheromone (ODP) was found. I suggest that the ability of a single host inflorescence to support the development of many larvae causes selection for the use of these oviposition deterring cues which can convey more quantitative information about the level of previous infestation than can ODPs. Adults fed a similar amount on damaged compared to undamaged inflorescences. These results assisted in the design of host range testing trials and allows predictions to be made about the effectiveness of this insect as a biological control agent.  相似文献   

15.
Thrips-borne tospoviruses cause numerous plant diseases that produce severe economic losses worldwide. In the disease system, thrips not only damage plants through feeding but also transmit causative agents of epidemics. In addition, thrips are infected with tospoviruses in the course of virus transmission. Most studies on the effect of tospoviruses on vector thrips have focused on the Tomato spotted wilt virus–Frankliniella occidentalis system. Thus, we focused on another thrips-borne tospovirus, Watermelon silver mottle virus (WSMoV), to examine the effect of virus infection on its vector, Thrips palmi. In this study, the direct and indirect effects of WSMoV on the life history traits and feeding preference of T. palmi were examined. The survival rate and developmental time of the WSMoV-infected larval thrips did not differ significantly from those of the virus-free thrips. Comparing the developmental time of larval thrips fed on the healthy plants, thrips-damaged plants, and thrips-inoculated plants (the WSMoV-infected plants caused by thrips feeding), feeding on the thrips-damaged plants reduced the developmental time, and the WSMoV infection in host plants partially canceled the effect of thrips damage on the developmental time. In addition, no significant variations between the virus-free and WSMoV-infected adult thrips regarding longevity and fecundity were observed. These results implied that WSMoV did not directly affect the life history traits of T. palmi, but the WSMoV infection indirectly affected the development of T. palmi through the virus-infected plants. Furthermore, feeding preference tests indicated that T. palmi preferred feeding on either the thrips-damaged plants or the thrips-inoculated plants to the healthy plants. The effect of tospoviruses on the life history and feeding preference of vector thrips might vary among host plants, virus species, vector species, and environmental factors.  相似文献   

16.
1. Interactions among herbivores mediated by plant responses to herbivore injury may have large impacts on herbivore population densities. Responses may persist for weeks after injury and may affect not only the initial (inducing) herbivore, but also herbivores that are spatially or temporally separated from the initial attacker. 2. In many plant–insect interactions, multiple life stages of the insect may be associated with the same plant, and these various stages may interact indirectly with one another via induced responses. The rice water weevil (RWW), Lissorhoptrus oryzophilus, a serious global pest of rice, is one such insect. A series of experiments were performed with root‐feeding larvae and leaf‐feeding adults of the RWW using three conventional rice varieties. 3. The first objective of this study was to test whether RWW adult feeding on rice leaves resulted in altered oviposition by subsequent adults. The hypothesis for the first objective was that RWW adult feeding would decrease plant suitability, resulting in reduced oviposition by subsequent adults. 4. The second objective was to test whether injury by RWW larvae to rice roots resulted in altered oviposition by subsequent adults. The hypothesis for the second objective was that below‐ground RWW larval feeding would decrease plant suitability of rice to above‐ground RWW adults, resulting in decreased oviposition. 5. Results provided inconsistent support for the first hypothesis, indicating that responses differed among combinations of variety and injury level. Conversely, consistent support for the second hypothesis was found, indicating that larval feeding on roots decreased suitability of rice plants for oviposition.  相似文献   

17.
Individual variation in two species of host plants (thistle,Cirsium kamtschaticum, and blue cohosh,Caulophyllum robustum) of the herbivorous ladybird beetleEpilachna pustulosa was examined under laboratory conditions for their acceptability to adult beetles as a food resource, for adult preference and for larval performance. When clones of these plants were subjected to non-choice tests using posthibernating female beetles, there was found to be significant intraspecific variation among clones in terms of their acceptability, but interspecific variation was not detected. Significant intraspecific as well as interspecific variation were frequently detected in the two host plants when clones of these plants were subjected to choice tests using posthibernating female beetles; the magnitude of interspecific plant variation for beetle preference is not necessarily larger than that of intraspecific plant variation. Individual variation across plant species with respect to beetle larval performance was also significant. A positive correlation between adult preference and larval performance is suggested across the two taxonomically remote host plant species, thistle and blue cohosh, although this needs further investigation.  相似文献   

18.
The host selection for oviposition by Spodoptera frugiperda (J.E. Smith) among corn, millet, cotton and soybean, and its relationship with the biological characteristics were investigated. Free and non-choice tests for oviposition using plots containing five plants each, from each host in plastic greenhouse, resulted in similar oviposition preference among the host plants. In addition, selected biological characteristics of S. frugiperda were determined in the laboratory with larvae feeding on host leaves, and the combination of leaf and cotton boll. Neonate larvae exhibited low success of colonization on cotton boll compared to the leaves of all other hosts. Spodoptera frugiperda fed only on cotton bolls exhibited longer larval and pupal development, and longer adult life span; however with similar egg production. Larvae fed cotton leaves during six days and then transferred to cotton bolls, however, exhibited development and reproduction similar to those reared on corn or only on cotton leaves. Therefore, the variations on immature stages of S. frugiperda were not related with host selection for oviposition which was similar among the studied hosts. Based on our data, the millet as a winter, rotational, and cover crop is a potential host for S. frugiperda, while leaves and cotton bolls were diets of intermediate suitability as compared to corn and soybean leaves.  相似文献   

19.
《Journal of Asia》2019,22(3):638-644
Flowering plants in gardens and along roadsides on the Big Island of Hawaii were sampled for thrips and anthocorid predators of thrips. A total of 171 plant samples, comprising 859 plant sample units (e.g. flowers or flower clusters) were collected from 56 species of plants in 25 families. Adult thrips were found on 43 plant species, and 32 of these also had larval thrips of the same species, indicating the plant species was a breeding host for thrips. Five different species of anthocorids – Orius persequens, Orius tristicolor, Paratriphleps laeviusculus, Montandoniola confusa, and Blaptostethus pallescens – were collected on 22 different plant species in 10 plant families. The plants with the highest numbers of anthocorid adults and nymphs present were Macaranga tanarius (Blush Macaraga), Verbesina encelioides (Golden Crownbeard), Tithonia diversifolia (Tree Marigold), Acalypha hispida (Chenille bush), and Coreopsis lanceolata (Lance-leaf Coreopsis). Macaranga tanarius was found to be the best host plant for anthocorids, with an average of 25.5 adult and 21.1 larval anthocorids per plant sample. Orius persequens was the most abundant anthocorid on M. tanarius with average adult and larval densities of 24.1 and 17.3 per plant sample, respectively. None of the insects found in association with M. tanarius are known pests. Macaranga tanarius has great potential as a banker plant to help suppress thrips populations in greenhouse crops with anthocorid predators.  相似文献   

20.
Although selection by herbivores for increased feeding deterrence in hostplants is well documented, selection for increased oviposition deterrence is rarely examined. We investigated chemical mediation of oviposition by the parsnip webworm (Depressaria pastinacella) on its principal hostplant Pastinaca sativa to determine whether ovipositing adults choose hostplants based on larval suitability and whether hostplants experience selection for increased oviposition deterrence. Webworms consume floral tissues and florivory selects for increased feeding deterrents; moths, however, oviposit on leaves of pre-bolting plants. Exclusive use of different plant parts for oviposition and larval feeding suggests oviposition should select for increased foliar deterrents. Recent webworm colonization of New Zealand (NZ) allowed us to assess phenotypic changes in foliar chemicals in response to webworm oviposition. In a common garden experiment, we compared NZ populations with and without a history of infestation from 2004 to 2006 for changes in leaf chemistry in response to oviposition. Three leaf volatiles, cis- and trans-ocimene, and β-farnesene, elicit strong responses in female moth antennae; these compounds were negatively associated with oviposition and are likely oviposition deterrents. Leaf β-farnesene was positively correlated with floral furanocoumarins that deter florivory; greater oviposition on plants with low floral furanocoumarins indicates that moths preferentially oviposit on parsnips most suitable for larval growth. Unlike florivory, high oviposition on leaves did not lower plant fitness, consistent with the fact that NZ parsnip foliar chemistry was unaffected by 3–6 years of webworm infestation. Thus, in this system, selection by ovipositing moths on foliar chemistry is weaker than selection by larvae on floral chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号