首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aims Understanding of the ecophysiological dynamics of forest canopy photosynthesis and its spatial and temporal scaling is crucial for revealing ecological response to climate change. Combined observations and analyses of plant ecophysiology and optical remote sensing would enable us to achieve these studies. In order to examine the utility of spectral vegetation indices (VIs) for assessing ecosystem-level photosynthesis, we investigated the relationships between canopy-scale photosynthetic productivity and canopy spectral reflectance over seasons for 5 years in a cool, temperate deciduous broadleaf forest at 'Takayama' super site in central Japan.Methods Daily photosynthetic capacity was assessed by in situ canopy leaf area index (LAI), (LAI × V cmax [single-leaf photosynthetic capacity]), and the daily maximum rate of gross primary production (GPP max) was estimated by an ecosystem carbon cycle model. We examined five VIs: normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), green–red vegetation index (GRVI), chlorophyll index (CI) and canopy chlorophyll index (CCI), which were obtained by the in situ measurements of canopy spectral reflectance.Important findings Our in situ observation of leaf and canopy characteristics, which were analyzed by an ecosystem carbon cycling model, revealed that their phenological changes are responsible for seasonal and interannual variations in canopy photosynthesis. Significant correlations were found between the five VIs and canopy photosynthetic capacity over the seasons and years; four of the VIs showed hysteresis-type relationships and only CCI showed rather linear relationship. Among the VIs examined, we applied EVI–GPP max relationship to EVI data obtained by Moderate Resolution Imaging Spectroradiometer to estimate the temporal and spatial variation in GPP max over central Japan. Our findings would improve the accuracy of satellite-based estimate of forest photosynthetic productivity in fine spatial and temporal resolutions, which are necessary for detecting any response of terrestrial ecosystem to meteorological fluctuations.  相似文献   

2.
3.
Human‐induced changes of the environment and their possible impacts on temperate forest understory plant communities have been examined in many studies. However, the relative contribution of individual environmental factors to these changes in the herb layer is still unclear. In this study, we used vegetation survey data covering a time period of 21 years and collected from 143 permanent plots in the Northern Limestone Alps, Austria. Data on soil chemistry (49 plots), light condition (51 plots), soil temperature and moisture (four and six plots), disturbance (all plots), climate (one station in a clearing area), and airborne sulfur (S) and nitrogen (N) deposition (two forest stands) were available for analyses. We used these data together with plot mean Ellenberg indicator values in a path analysis to attribute their relative contributions to observed vegetation changes. Our analysis reveals a strong directional shift of the forest understory plant community. We found strong evidence for a recovery of the ground‐layer vegetation from acidification as response to decreased S deposition. We did not observe a community response to atmospheric N deposition, but we found a response to altered climatic conditions (thermophilization and drying). The path analysis revealed that changes in the light regime, which were related to small‐scale disturbances, had most influence on herb layer community shifts. Thermophilization and drying were identified as drivers of understory community changes independent of disturbance events.  相似文献   

4.
Interdependence of peat and vegetation in a tropical peat swamp forest   总被引:5,自引:0,他引:5  
The visual uniformity of tropical peat swamp forest masks the considerable variation in forest structure that has evolved in response to differences and changes in peat characteristics over many millennia. Details are presented of forest structure and tree composition of the principal peat swamp forest types in the upper catchment of Sungai Sebangau, Central Kalimantan, Indonesia, in relation to thickness and hydrology of the peat. Consideration is given to data on peat geochemistry and age of peat that provide evidence of the ombrotrophic nature of this vast peatland and its mode of formation. The future sustainability of this ecosystem is predicted from information available on climate change and human impact in this region.  相似文献   

5.
The composition of a landscape is a fundamental indicator in land-cover pattern assessments. The objective of this paper was to evaluate a landscape composition indicator called ‘landscape mosaic’ as a framework for interpreting land-cover dynamics over a 9-year period in a 360,000 km2 study area in the southern United States. The indicator classified a land parcel into one of 19 possible landscape mosaic classes according to the proportions of natural, developed, and agriculture land-cover types in a surrounding 4.41-ha neighborhood. Using land-cover maps from remote sensing, the landscape mosaics were calculated for each 0.09-ha pixel in the study area in 1996 and 2005. Mosaic transition matrices estimated from the pixel change data were then used to develop two Markov chain models. A “landscape mosaic” model was a temporal model of the shifting landscape mosaic, based on the probability of landscape mosaic change for all pixels. A “forest security” model was the same, except that the Markov states were defined by both the landscape mosaic and the land-cover of each pixel, which allowed interpreting forest land-cover dynamics in the context of a shifting landscape mosaic. In the forest security model, the overall percentage of forest decreased from 33% in 2005 to 17% at steady-state, and there was little change in the relative distribution of existing forest area among landscape mosaic classes. In contrast, the landscape mosaic steady-state was reached later, and indicated that a maximum of 10% of total area was available for forest. The implication was that forest security depended ultimately on the dynamics of the landscape mosaics that contained forest, not on forest dynamics within those landscape mosaics.  相似文献   

6.
热带森林植被生态恢复研究进展   总被引:3,自引:2,他引:3  
臧润国  丁易 《生态学报》2008,28(12):6292-6304
热带森林是地球上生物多样性最高和生态功能最为强大的植被类型之一,在维护全球生态平衡中起着至关重要的作用,同时也为人类社会提供着多种多样的物质资源和生态系统服务。然而热带森林是目前生物多样性消失最快和生态功能退化最为严重的生态系统之一,如何有效地保护现存的热带森林不再进一步退化,以及如何使已经退化的生态系统尽快得到恢复是生态学工作者面临的重要议题。不同方式、规模和强度的干扰对热带林的破坏程度及其以后的恢复过程产生的影响不同。除少数大型自然干扰事件外,采伐、刀耕火种、农业开发用地等人为干扰是造成当前热带森林植被大面积退化的主要原因。多种干扰交互作用、杂草与外来物种入侵、退化植被和土壤状况、残存植被组分及土壤种子库、退化植被周围的景观格局以及全球气候变化等因素都能够影响热带森林植被恢复的速度和方向。基于功能群的研究思想将可能为物种丰富的热带森林植被恢复的研究提供一个全新途径。  相似文献   

7.
Inland halophilous vegetation as indicator of soil salinity   总被引:2,自引:0,他引:2  
  相似文献   

8.
We aimed to detect the trajectories of forest-floor vegetation recovery in a Picea mariana forest after a wildfire. Since fire severity in boreal forests is expected to increase because of climate changes, we investigated the effects of ground-surface burn severity, a surrogate for overall fire severity, on the revegetation. We annually monitored vegetation <1.3 m high in 80 1 m × 1 m quadrats at Poker Flat Research Range (65°12′N, 147°46′W, 650 m a.s.l.) near Fairbanks, interior Alaska, where a large wildfire occurred in the summer of 2004, from 2005 to 2009. Sphagnum mosses were predominant on the unburned ground surface. In total, 66 % of the ground surface was burned completely by the wildfire. Total plant cover increased from 48 % in 2005 to 83 % in 2009. The increase was derived mostly by the vegetative reproduction of shrubs on the unburned surface and by the immigration of non-Sphagnum mosses and deciduous trees on the burned surface. Deciduous trees, which had not been established before the wildfire, colonized only on the burned surface and grew faster than P. mariana. Although species richness decreased with increasing slope gradient, these deciduous trees became established even on steep slopes. The wildfire that completely burned the ground surface distorted the revegetation, particularly on steep slopes. The restoration of the Sphagnum surface was a prerequisite after the severe wildfire occurred, although the Sphagnum cover had difficulty returning to predominance in the short term.  相似文献   

9.
Summary Permanent quadrats were marked out in two areas of hardwood forest vegetation in 1969, and listings of their vascular plant species were taken on several occasions over the snow-free seasons of 1969, 1970, 1971 and 1976. Over the period of study, mean numbers of species per m2 remained virtually constant, but variations in the species compositions of individual quadrats were such that mean turnover ratios of 0.115 and 0.085, respectively, were computed for the two stands. Between 1969 and 1976 averages of 20% and 14%, respectively, of the species found in individual quadrats were replaced. This was not accomplished by qualitative changes in the floras of the two stands. Rather, it reflects the operation of a system of continuous rearrangements of species in the small quadrats of both sample areas.Taxonomical nomenclature and life-form system used in this study are according to Gleason & Cronquist (1963).William Phillips, Ian Sutherland and Sheila Thompson helped in the field; Professor Keith Wade commented on the material; Abal Sen drafted the diagram; and the research is part of that funded by the National Research Council of Canada.  相似文献   

10.
11.
Abstract. Analysis of pollen, charcoal and loss-on-ignition in peat cores from a Picea aèies-dominated swamp forest in central Sweden show the vegetation changes and disturbance patterns over 9500 yr. Six major sequences of local vegetation development are identified: (A) Pinus period, ca. 9500–7000 cal. BP; (B) Open mire period (ca. 7000–4500 cal. BP; (C) Betula period, ca. 4500–2300 cal. BP; (D) Picea period (ca. 2300–1000 cal. BP; (E) Human impact period (ca. 1000–100 cal. BP); and (F) Period of human abandonment during the last ca. 100 yr. The swamp forest has been highly dynamic in response to various natural and anthropogenic disturbance agencies. Several fires have heavily influenced the vegetation development. During the last ca. 900 yr human influence has been important, initially from grazing and trampling by domesticated animals (ca. 1000–500 cal. BP), and subsequently small-scale cereal growing (ca. 400–100 BP). Cutting, burning and animal browsing influenced the structure and dynamics of the swamp forest by creating a more open stand and suppressing tree regeneration. Recent cessation of human impact has led to increased tree regeneration and a denser swamp forest stand. The present high biodiversity, and subsequent conservation interest does not result from long-term stability or absence of fire and human impact. However, in spite of repeated disturbances, a continuity of old and senescent trees produced a forest type with abundant dead wood. With the relatively minor importance of fire over long periods of time, the swamp forest developed a structure maintaining a high biological diversity. An important issue for maintaining long-term biodiversity in the boreal landscape must be to create a mosaic where different forest types are present, with a variety of structures, substrates and processes, to provide a certain degree of freedom for species to move around in the landscape.  相似文献   

12.
13.
14.
林下植被的生物量分布特征及其作用   总被引:20,自引:1,他引:20  
杨昆  管东生 《生态学杂志》2006,25(10):1252-1256
林下植被是森林生态系统的重要组成部分。研究林下植被的生物量特征及其生态作用对深入研究森林生态系统结构和功能有重要意义。本文归纳了森林林下植被的生物量分布特征与森林的类型、龄级和林分特征等因子之间的变化关系,分析了林下植被在维持森林生态系统营养元素循环、保持水土、指示森林环境状态变化、影响森林林分的生理生态特征和森林演替、保护动物的栖息地以及维持生态平衡等方面的主要生态作用。  相似文献   

15.
A method is presented for ecological assessment of botanical sample data from a nature reserve network. The approach uses regional floristic survey data for a specific biotope as a context for spatial and temporal comparison. Assessments are based upon floristic similarity to reference vegetation types and indicator scores that summarise multivariate plant species data in relation to important environmental gradients. The approach was implemented as a software tool using floristic survey data for soligenous mires in a UK region. Plant community monitoring data were assessed against reference communities from this regional baseline to illustrate the potential advantages of the method. These include; (a) allowing links to be made between multivariate plant species data and measurements of environmental drivers, (b) providing realistic assessments of spatial and temporal differences because comparisons are against typical values of indicator scores for the region, (c) providing the scope for setting realistic criteria for vegetation monitoring.  相似文献   

16.
A carbon (C) balance indicator is presented for the evaluation of forest bioenergy scenarios as a means to reduce greenhouse gas (GHG) emissions. A bioenergy‐intensive scenario with a greater harvest is compared to a baseline scenario. The relative carbon indicator (RC) is defined as the ratio between the difference in terrestrial C stocks – that is the C debt – and the difference in cumulative bioenergy harvest between the scenarios, over a selected time frame T. A value of zero indicates no C debt from additional biomass harvests, while a value of one indicates a C debt equal to the amount of additionally harvested biomass C. Multiplying the RC indicator by the smokestack emission factor of biomass (approximately 110 t CO2/TJ) provides the net cumulative CO2 emission factor of the biomass combustion as a function of T, allowing a direct comparison with the emission factors of comparable fossil fuels. The indicator is applied to bioenergy cases in Finland, where typically the rotation length of managed forests is long and the decay rate of harvest residues is slow. The country‐level examples illustrate that although Finnish forests remain as a C sink in each of the considered scenarios, the efforts of increasing forest bioenergy may still increase the atmospheric CO2 concentrations in comparison with the baseline scenario and use of fossil fuels. The results also show that the net emission factor depends – besides on forest‐growth or residue‐decay dynamics – on the timing and evolution of harvests as well. Unlike for the constant fossil C emission factor, the temporal profile of bioenergy use is of great importance for the net emission factor of biomass.  相似文献   

17.
This paper presents the results of 20-year studies into the impact made by an experimental high-intensity fire on ecosystem components and postfire succession in a middle-taiga pine forest. About 44% of forest fuel loads burned down during the fire, and the emission of carbon was more than 18 t C/ha. As a result of the fire impact, trees died within 3 years after the fire, and this resulted in a significant accumulation of fuel loads. Twenty years after the fire, the biomass of forest fuel loads surpassed the prefire values 4 times, which led to the possibility of the origin of a repeated high-intensity fire. The initial stage of postfire succession in the pine forest is determined by forest vegetation conditions and takes place with the replacement of dominant grass and shrubs. The agrochemical and hydrothermal soil indicators were revealed to be changed after the fire, and this promoted improved conditions for the origin and development of natural regeneration sufficient for the formation of forest stand.  相似文献   

18.
Vegetation composition differs significantly between ancientand recent forest, due to slow colonization capacity of typical forest speciesand the higher abundance of early successional species in recent forest.However, little is known about differences in persistent seed bank compositionbetween ancient and recent forest and about the interaction between seed bankand vegetation in relation with forest age. We surveyed the seed bank and theunderstorey vegetationcomposition in transects from ancient to recent forest. Seed bank and fieldlayer vegetation characteristics and similarity between seed bank andvegetationwere analysed in relation to recent forest age and distance to the ancientforest. A total of 39 species and 14,911 seedlings germinated, whichcorresponds with a seed density of 12,426 seeds/m2.Total seed density is significantly higher in the youngest recent forest parcel(55 years). Also the seed bank composition in the youngest forest parceldifferssignificantly from the other parcels. After a longer period of reforestation,the seed bank approaches that of the ancient forest, suggesting seed bankdepletion, although the seed bank is permanently replenished to some extent byseed bank forming species from local disturbances. Seed bank composition doesnot change significantly with distance to the ancient forest. Similaritybetween seed bank and vegetation composition, nomatter the forest age, is very low, but decreases with increasing forest age.The most frequent species in the vegetation are absent in the seed bank andvice versa. The contribution of forest species is highin the vegetation and they almost not occur in the seed bank, while species offorest edges and clearings, and species of disturbed environments are morefrequent in the seed bank. The seed bank is mainly composed of earlysuccessional species of former forest stages or species which temporary occurinsmall-scale disturbances. The seed bank may enhance the negative effects ofearlysuccessional, mainly competitive species to the forest species richness in therecent forest. In this respect, forest management should minimise forestdisturbances, to prevent germination of competitive species form buriedseeds.  相似文献   

19.
考虑森林植被影响的小流域降雨径流模型   总被引:2,自引:0,他引:2  
范世香  程银才  高雁  李晓晏 《生态学报》2008,28(5):2372-2372~2379
在一个面积为834km2的森林流域上,采用覆盖率和林木蓄积量作为森林植被影响降雨径流的两个量化指标,并划分了两个等级:(1)森林覆盖率≥60%且蓄积量≥5000 m3/km2;(2)森林覆盖率<60%且蓄积量<5000 m3/km2.在构造的模型中,根据森林植被的两个量化指标,分别选取了不同的参数.在产流量计算中,该模型采用了蓄满产流模拟技术,土壤蓄水量计算采用了二层模式,流域蓄水容量-面积分配曲线采用了指数函数形式,即a=1-eKP.在汇流计算中,采用了分水源的演算方法,其中地表水汇流采用了等流时线法与线性水库调蓄相结合的技术,地下水汇流采用了简化三角形法.经过对模拟计算结果进行比较,表明该模型不仅具有较好的精度,而且还能大致反映出两种不同森林植被条件对涵养水源、调节洪水的不同作用效果.该模型具有较强的实用性,能够为森林水文功能的深化研究起到借鉴作用.  相似文献   

20.
Distributions of lucidophyllous species are limited due to the fragmentation of laurel forest. On Komayama Hill in central Japan, we evaluated the colonization of typical lucidophyllous vascular plants from a 350-year-old laurel forest into adjacent abandoned secondary forest for conservation and restoration purposes. A total of 14 consecutive subplots were established along the vegetation border between the two forests (length, 30 m; width, 5 m), extending 70 m into the secondary forest; 18 quadrats of old-growth forest were surveyed. Edge effects of old-growth forest were found to play an important role in re-establishing lucidophyllous saplings and seedlings in the secondary forest. In particular, the abundances of the four dominant canopy species of the old-growth forest significantly decreased with increasing distance. Hence, they are expected to colonize further into the secondary forest and, ultimately, to dominate the canopy. However, the number of lucidophyllous species did not change with distance. Species such as Ficus nipponica, Damnacanthus indicus, Ilex integra, and Lemmaphyllum microphyllum were near-completely or completely limited to the old-growth forest. They are known to be negatively affected by forest fragmentation and were observed to be struggling to colonize the exterior of the old-growth forest even after 60 years of abandonment. Their absence highlighted the limited colonization capacities of some old-growth forest species and underlined the time required for habitat restoration following human disturbance. We conclude that it is important to consider the population dynamics of dominant canopy species and the colonization of these interior species when assessing the habitat expansion of lucidophyllous species and hence the restoration of degraded lands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号