首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the context of the requirements of the European Water Framework Directive (WFD) numerous benthic indices have been proposed recently to assess the ecological quality of marine and transitional waters. In several studies these metrics were applied to coastal and estuarine environments under diverse anthropogenic pressures. Although currently the dumping of dredged material is one of the most prominent human impacts that modify estuaries, the performance of benthic indices to detect effects of dredged sediment relocation has not yet been tested explicitly. Hence we examined a selection of common metrics (species richness, Shannon diversity, AMBI, M-AMBI, W-value, BO2A) at 11 dumping and 11 nearby reference areas in the highly modified Elbe estuary (Germany), where permanent dredging is necessary to maintain the depth of the navigation channel. In order to cover the entire estuary, the study area spanned over the whole salinity gradient from limnic to euhaline. Additionally, we investigated changes in benthic communities due to dredged material placement. All indices, except the W-value, were suitable to differentiate between dumping and reference areas and showed significantly better index values exclusively at reference areas. The applicability of AMBI and M-AMBI was restricted in the limnic stretch due to the more frequent occurrence of freshwater species there. The W-value and BO2A were non-satisfactory in the case of azoic sediment, and in most cases these two indices indicated much better ecological status classifications than the other indices tested. Furthermore, the BO2A had restricted applicability with increasing salinity. At eight of eleven sites the benthic communities differed significantly between dumping and reference areas. Our findings show that the power of conventional benthic indices to detect physical disturbances like the dumping of dredged sediment varies greatly. Having this in mind, we suggest to choose carefully the benthic indices for ecological quality assessments according to the WFD in estuaries in order to avoid misclassifications. Such errors may lead to unnecessarily expensive remediation activities or, in the opposite case, to inactivity although actions were necessary. Furthermore, in order to better meet the WFD requirements we suggest that, regarding frequency and volume, dumping should be adapted as far as possible to the natural processes of sediment movement.  相似文献   

2.
《Ecological Indicators》2008,8(4):395-403
Legislation in US and Europe has been adopted to determine the ecological integrity of estuarine and coastal waters, including, as one of the most relevant elements, the benthic macroinvertebrate communities. It has been recommended that greater emphasis should be placed on evaluating the suitability of existing indices prior to developing new ones. This study compares two widely used measures of ecological integrity, the Benthic Index of Biotic Integrity (B-IBI) developed in USA and the European AZTI's Marine Biotic Index (AMBI) and its multivariate extension, the M-AMBI. Specific objectives were to identify the frequency, magnitude, and nature of differences in assessment of Chesapeake Bay sites as ‘degraded’ or ‘undegraded’ by the indices. A dataset of 275 subtidal samples taken in 2003 from Chesapeake Bay were used in this comparison. Linear regression of B-IBI and AMBI, accounted for 24% of the variability; however, when evaluated by salinity regimes, the explained variability increased in polyhaline (38%), high mesohaline (38%), and low mesohaline (35%) habitats, remained similar in the tidal freshwater (25%), and decreased in oligohaline areas (17%). Using the M-AMBI, the explained variability increased to 43% for linear regression, and 54% for logarithmic regression. By salinity regime, the highest explained variability was found in high mesohaline and low polyhaline areas (53–63%), while the lowest explained variability was in the oligohaline and tidal freshwater areas (6–17%). The total disagreement between methods, in terms of degraded-undegraded classifications, was 28%, with high spatial levels of agreement. Our study suggests that different methodologies in assessing benthic quality can provide similar results even though these methods have been developed within different geographical areas.  相似文献   

3.
《Ecological Indicators》2008,8(4):373-388
The implementation of the Water Framework Directive requires the classification of the ecological quality status of benthic macroinvertebrates in costal and transitional waters. The uncertainty and complexity of this task have lead to the creation of specific Geographical Intercalibration Groups (GIGs) for the different ecoregions and types of water bodies established. In this framework, several metrics are under study in the United Kingdom, Spain and Denmark for North East Atlantic coastal waters (NEA-GIG). All of them include in their formulations the AMBI index. Nevertheless, few advances have been made in relation to transitional waters. This paper aims to test the suitability of those methodological procedures for their application in Northern Spanish estuaries. The results show evident divergences in classification of ecological status among methods, although the correlations of corresponding ecological quality ratios (EQRs) are good. Thus, we think that it may be necessary to modify the boundaries between each ecological status category and adjust the reference conditions for the variety of community-types existing in estuarine water bodies. However, some problems arise in the assessment of some naturally stressed communities. In this situation, we found an overall dominance of species tolerant to organic enrichment in all status categories and low range of variation of AMBI index. This aspect introduces some uncertainty in relation to the ability of this index to detect a deleterious effect in these estuarine communities naturally stressed. On the other hand, we found some sites that achieve good status according to the metrics used, even though the number of opportunistic species was high. The use of combined approaches that incorporate physicochemical condition of sediments would be a straightforward approach to reduce the risk of failing in the assignation of ecological status category.  相似文献   

4.
In Europe there is an extensive history of the derivation and use of benthic indicators which parallels similar developments in North America and elsewhere. Most recently, this has increased because major European Union Directives require that indicators of marine benthic change are used to confirm good ecological status quality (as in the Water Framework Directive) and favourable conservation status (as in the Habitats and Species Directive). Furthermore, these indicators have to fit within the current philosophy of the Ecosystem Approach requiring the development and use of Ecological Quality Objectives and Standards. Despite this, comparisons of families of indicators derived by differing methods have not been carried out such that the robust nature of the indicators on differing spatial scales and under differing benthic conditions has not been rigorously assessed. Using case studies from the Portuguese coasts and estuaries, this paper compares and contrasts univariate and multivariate macrobenthic indicators to quantify comparisons of change. The studies indicate the relative value of those indicators at contrasting spatial scales, e.g. in the transition from small areas around coastal submarine outfalls, to the local and regional estuarine and coastal scale. The analysis indicates the difficulties of deriving and using qualitative and quantitative indicators from benthic communities in stable, and in moderately and highly variable environmental conditions in estuarine, coastal and open sea habitats. In some areas, the variability in the indicators and indices within a station and site is as large as that between stations and sites. For those areas studied, there is an adequate quality and quantity of benthic data available for making management decisions but this is unlikely to be the case for all areas. Similarly, the interrogation of the methods shows that while their use and interpretation rely on a good understanding of the biology of the individual species and their responses to physical and polluting stress, that understanding is not yet available for many of the species. Most notably, while the indices and integrative indicators are becoming increasingly sophisticated, many are still dependent on the Pearson-Rosenberg model for organic enrichment hence they require to be validated for physical disturbance and for chemical pollution. Because of these features, the outcome of the analysis has repercussions for the management of coastal and estuarine areas. Although the present study indicates the value of indicators of benthic change for making management decisions at the various scales, further validation is required especially, for example, where one indicator over-estimates the ecological status for poor areas and underestimates it for good areas.  相似文献   

5.
Biotic indices based on soft-bottom macrozoobenthic communities are currently used throughout Europe to assess the ecological quality of coastal and transitional water bodies according to the European Water Framework Directive. However, the performance of the currently available biotic indices still has to be tested against a variety of different impact sources. In particular, physical perturbations have received much less attention than other kind of disturbances. This study consisted in testing the capacity of currently available uni- (BOPA, AMBI and BENTIX) and multivariate (M-AMBI) Biotic Indices to assess the ecological impact of the destruction of a Zostera noltii seagrass bed in Arcachon Bay (France) following sediment deposits. Changes of habitat after this physical perturbation were hardly assessed by any of these Biotic Indices whereas analysis of the benthic community showed drastic changes of structure following the perturbation and no recovery after 15 months. This study demonstrates that these Biotic Indices must be integrated into a multimetric approach which describes better the biological integrity of the benthic community by including a complementary set of metrics. A new multimetric approach, named MISS (Macrobenthic Index of Sheltered Systems) is proposed. MISS correctly highlighted the destruction of the seagrass beds, by using 16 metrics describing the biological integrity of the macrofauna.  相似文献   

6.
This study applies six macrozoobenthos-based biotic indices in the shallow coastal waters along the Algerian coast (southern Mediterranean Sea) to establish a reference situation for future use. These shallow fine sand communities were sampled in seven bays along the Algerian coast during the 1980s and the beginning of the 1990s. For the first time, some of the benthic indices used nowadays in Europe for the implementation of the WFD and/or in North America for the Clean Water Act were used to analyze the data collected twenty years ago in order to assess the biological quality status of the Algerian shallow fine sand communities and to provide ecological classifications for the fine sand community along the Algerian coast. The faunal composition showed that the fine sand communities belonged to a Well-Calibrated Fine Sand (WCFS) biocenosis characterized by high species richness and high H′ Shannon-Weaver diversity, with moderate abundance levels only. In the bays of Fetzara, Jijel, Bejaia, Bou Ismail and Arzew (though not in bays of Algiers and Oran), H′ is >4.5, which implies highly diversified communities. The results of the six benthic indices (H′, AMBI, M-AMBI, BENTIX, BOPA and ITI) suggest that good and high quality status assessments are prevalent in all seven bays for the benthic shallow sand communities along the Algerian coast. Nevertheless, the effect of pollution was observed at a small number of sites in the Arzew, Oran and Algiers bays. For example, in Algiers Bay, an east-west quality gradient revealed the effect of organic matter input.  相似文献   

7.
《Ecological Indicators》2007,7(2):455-468
This work presents an assessment of the ecological quality status of two marine coastal areas in the Aegean Sea (Greece, Eastern Mediterranean) based on the benthic macroinvertebrate quality element. S. Evvoikos and Thessaloniki gulfs, two coastal areas subjected to slight and heavier anthropogenic pressures, were selected to test the biotic index Bentix developed for the assessment of the ecological status. Other ecological indicators, such as the Shannon diversity index (H′), the species richness (S) and the AMBI biotic index were also applied and evaluated comparatively. Faunistic data were also used to interpret results. The resulting classification was validated with the use of physicochemical parameters and pressure information. This work also provides an insight into the structure of the Bentix classification scheme within the scope of its use in Water Framework Directive (WFD) implementation.  相似文献   

8.
将3个底栖生物指数AZTI海洋生物指数(AMBI)、多毛类机会种和端足目动物指数(BOPA)、底栖动物多毛类和端足目指数(BPA)和Shannon多样性指数(H)应用于福建省近岸海域4个典型海湾和1个河口的生态质量评价,评估这4个指数在研究区的适用性.结果表明: 4个指数的评价结果差异较大,评价等级完全相同的站位仅有4个,占总评价站数的8.7%;AMBI将76.1%的站位评价为等级“良”,BOPA将89.1%的站位评价为等级“优”,BPA和H的评价结果等级梯度变化明显;对于海湾,BOPA、BPA和AMBI与营养盐因子活性磷酸盐(DIP)和无机氮(DIN)无显著相关性,不能响应研究区的富营养化压力;而H与DIN呈显著负相关.对于河口,BOPA、BPA和AMBI与DIP和DIN均呈显著正相关,且随着与入海口距离的减小,7个断面生态质量评价等级没有明显变化,不能识别河口高强度的富营养化压力,评价结果偏高;而H与DIN呈显著负相关,且随着与入海口距离的减小,7个断面生态质量评价等级呈现提高的趋势.总体上,BOPA、BPA和AMBI在福建近岸海域的适用性较低,而H更合适该研究区,能够响应研究区主要的环境压力.  相似文献   

9.
The AZTI Marine Biotic Index (AMBI) requires less geographically-specific calibration than other benthic indices, but has not performed as well in US coastal waters as it has in the European waters for which it was originally developed. Here we examine the extent of improvement in index performance when the Ecological Group (EG) classifications on which AMBI is based are derived using local expertise. Twenty-three US benthic experts developed EG scores for each of three regions in the United States, as well as for the US as a whole. Index performance was then compared using: (1) EG scores specific to a region, (2) national EG scores, (3) national EG scores supplemented with standard international EG scores for taxa that the US experts were not able to make assignments, and (4) standard international EG scores. Performance of each scheme was evaluated by diagnosis of condition at pre-defined good/bad sites, concordance with existing local benthic indices, and independence from natural environmental gradients. The AMBI performed best when using the national EG assignments augmented with standard international EG values. The AMBI using this hybrid EG scheme performed well in differentiating apriori good and bad sites (>80% correct classification rate) and AMBI scores were both concordant and correlated (rs = 0.4–0.7) with those of existing local indices. Nearly all of the results suggest that assigning the EG values in the framework of local biogeographic conditions produced a better-performing version of AMBI. The improved index performance, however, was tempered with apparent biases in score distribution. The AMBI, regardless of EG scheme, tended to compress ratings away from the extremes and toward the moderate condition and there was a bias with salinity, where high quality sites received increasingly poorer condition scores with decreasing salinity.  相似文献   

10.
Many globally applied biotic indices, including the AMBI benthic index, are based on species’ sensitivity/tolerance to anthropogenic disturbances. The AMBI scoring primarily relies on the correct assignment of both taxon stressor-sensitivities and the disturbance thresholds or bands. Using an extensive, long-term monitoring dataset from New Zealand (NZ) estuaries, we describe how the AMBI has been strengthened through quantitative derivation of taxon-specific sensitivities and condition thresholds for two key estuarine stressors [mud and total organic carbon (TOC)], and the integration of taxon richness. The results support the use of the existing AMBI condition bands but improve the ability to identify cause; 2–30% mud reflected a ‘normal’ to ‘impoverished’ macrofaunal community; 30–95% mud and 1.2–3% TOC ‘unbalanced’ to ‘transitional’; and >3–4% TOC ‘transitional’ to ‘polluted’. The (refined) AMBI was also successfully validated (R2 values >0.5 for mud, and >0.4 for TOC) for use in shallow, intertidal dominated estuaries NZ-wide. Most biotic indices lack the ability to differentiate between anthropogenic disturbances, which in turn undermine their effectiveness for applied purposes. By integrating key quantitative information to an existing benthic index, these results enable more robust identification of coastal stressors and facilitate defensible management decisions.  相似文献   

11.
Since AMBI was published originally in 2000, it has been used in an increasing number of investigations with monitoring purposes, or to analyse impacts on soft-bottom macrobenthic communities. Some guidelines for its correct use were published in 2005; however, a main issue remained without an answer — which are the minimal area and number of replicates necessary, to obtain a precise estimate for AMBI? In this study, new methodologies such as bootstrap techniques have been applied to this particular problem.Data were obtained from sampling carried out in 1995, within the framework of the Littoral Water Quality Monitoring and Control Network of the Basque Country (northern Spain). The sampling strategy consisted of 11 intertidal estuarine sampling stations (0.25m2, sampled for each of six replicates) and 17 subtidal estuarine and coastal sampling stations (0.125m2, sampled for each of six replicates).Two replicates have been established as being sufficient, both for intertidal and subtidal sampling stations, to classify 80% of the pseudosamples into the same disturbance level, in terms of AMBI, for 64% of the stations.For the minimal area, it has been determined also (for both intertidal and subtidal sampling stations) that 0.25m2 is sufficient to classify 80% of the iterations into the same disturbance level, for 64% of the stations.  相似文献   

12.
A huge tsunami is one of the greatest disturbance events in coastal benthic communities, although the ecological consequences are not fully understood. Here we examined the tsunami-induced changes in the sediment environment and macrozoobenthic assemblage in a eutrophic brackish lagoon in eastern Japan. The 7.2-m-high tsunami completely replaced muddy sediment with drifting sea sand throughout the lagoon, leading to the drastic changes in quantity and quality of sedimental organic matters, sulfide contents, and sediment redox condition. Intensive physical stress devastated the benthic community, but the disappearance of sulfidic muddy bottoms significantly improved the habitat quality for macrozoobenthos. The re-established macrozoobenthic community after 5 months was characterized by (1) a 2-fold higher total density, but sharp declines in species richness, diversity, and evenness; (2) an increased density of opportunistic taxa (e.g., polychaete Pseudopolydora spp. and amphipod Monocorophium uenoi) in newly created sandy bottoms; and (3) disappearance of several dominant taxa including bivalves and chironomid larvae. These findings indicate that the sensitivity and recovery potential of macrozoobenthos were highly taxa-specific, which was closely related to the taxa’s ecological characteristics, including tolerance to physical disturbance, life-history traits, and life form. Our data revealed the rapid recolonization of opportunistic macrozoobenthos after a huge tsunami, which would contribute to the functional recovery of estuarine soft-bottom habitats shortly after a disturbance event.  相似文献   

13.
14.
Estuarine and coastal ecosystems are productive and functionally diverse areas that provide a wide range of societal benefits. Along with human exploitative uses comes an array of anthropogenic disturbances that can affect ecological integrity, including changes to the composition and resilience of benthic macroinvertebrate communities. To understand the responses of ecological communities to anthropogenic disturbance and to manage and mitigate effects, indices for assessing the ecological integrity of estuarine and coastal waters have proliferated worldwide. Using data from 84 intertidal sites in Auckland, New Zealand, we evaluated the suitability of two widely used measures of ecological integrity that were developed in USA and Europe, respectively: the Benthic Index of Biotic Integrity (B-IBI) and the AZTI's Marine Biotic Index (AMBI). We then developed a local index based on macrofaunal traits and verified its utility using independent data from >100 additional sites. The local traits based index (TBI), constructed from the richness of macrofaunal taxa in seven functional groups, responded to changes in sediment mud percentage and heavy metal contaminant concentration gradients below international guidelines. The TBI performed better than the indices developed overseas, probably because they were designed to track organic enrichment and hypoxia, which are not the predominant stressors in New Zealand at present. The TBI successfully tracked the stressors that were the most relevant locally and indicated the relative levels of within-group taxonomic richness at various sites. As within-group richness is a component of functional redundancy and ecological resilience, the TBI offers a trifecta of simplicity, robustness and meaningfulness that will facilitate management.  相似文献   

15.
The analysis of temporal patterns in water quality and benthic assemblages in estuaries constitutes an important methodological issue for discriminating the effects of natural and anthropogenic pressures. Temporal trends in water quality and in the subtidal benthic community over a 5-year interval in the Mondego estuary (Portugal) were investigated with the aim of assessing changes in environmental quality as a response to restoration efforts and climate variability. Particularly, we addressed the following questions: (a) Would trends in water quality and benthos behave consistently over the whole study period for the different zones of the monitoring network and indicate improvement or degradation in ecological condition? (b) Could we distinguish the effects of climate variability and restoration efforts in water quality and benthos from trend analysis results? (c) Could the response of the benthic communities and water quality be useful to guide the planning of future management actions in this system?Clear cause–effect relationships regarding the ecological response to restoration efforts and climate variability were indeed challenging to identify and interpret. In fact, the response of water quality and benthic communities to restoration efforts seemed to have been masked by the effects of climatic variability. Furthermore, the present study illustrated clearly the high environmental variability inherent to estuarine systems and the difficulty of clearly distinguishing natural from anthropogenic stressors, in agreement with the “Estuarine Quality Paradox”. Implications for ecological quality assessment and management of the Mondego estuary and other poikilohaline systems are discussed, namely with regard to the “one-out, all-out” principle required by the European Water Framework Directive (WFD).  相似文献   

16.
Ecologists studying coastal and estuarine benthic communities have long taken a macroecological view, by relating benthic community patterns to environmental factors across several spatial scales. Although many general ecological patterns have been established, often a significant amount of the spatial and temporal variation in soft-sediment communities within and among systems remains unexplained. Here we propose a framework that may aid in unraveling the complex influence of environmental factors associated with the different components of coastal systems (i.e. the terrestrial and benthic landscapes, and the hydrological seascape) on benthic communities, and use this information to assess the role played by benthos in coastal ecosystems. A primary component of the approach is the recognition of system modules (e.g. marshes, dendritic systems, tidal rivers, enclosed basins, open bays, lagoons). The modules may differentially interact with key forcing functions (e.g. temperature, salinity, currents) that influence system processes and in turn benthic responses and functions. Modules may also constrain benthic characteristics and related processes within certain ecological boundaries and help explain their overall spatio-temporal variation. We present an example of how benthic community characteristics are related to the modular structure of 14 coastal seas and estuaries, and show that benthic functional group composition is significantly related to the modular structure of these systems. We also propose a framework for exploring the role of benthic communities in coastal systems using this modular approach and offer predictions of how benthic communities may vary depending on the modular composition and characteristics of a coastal system.  相似文献   

17.
The Water Framework Directive requires all Member States to achieve good ecological quality status for all waters (e.g., transitional waters). For that purpose, Member States must assess water bodies based on information on the Biological Quality Elements listed for each of them (e.g., benthic macroinvertebrates). However, the production of such a quality status classification (high, good, moderate, poor, bad) requires high reference conditions (associated with the absence of, or very low, human pressure) against which the deviation of the samples to be assessed can be measured. In transitional waters, upper stretches have seldom been included in monitoring activities, resulting in very little knowledge of mesohaline and oligohaline areas, which means further difficulty when defining the required reference conditions for these zones.Regarding the benthic macroinvertebrates, large datasets from the mesohaline and oligohaline stretches of the Mondego estuary (four seasons, five years, environmental parameters, density and biomass data) were used to estimate high reference condition values. In terms of environmental conditions, summer was identified as the most stable season and the most suitable for defining reference conditions for selected ecological indicators. For each indicator, the multivariate linear model expressing the best correlation with measured environmental parameters was selected. These models were used afterwards, by replacing the environmental parameters in those equations with their high reference values, to calculate the reference condition for each ecological indicator.Generally, macrobenthic communities within each stretch changed over the years, being mainly influenced by salinity and sediment organic matter. In both stretches, only a few taxa occurred and two species (the amphipod Corophium multisetosum and the bivalve Corbicula fluminea) were clearly dominant. Diversity values (for Margalef, Shannon and ES50 – Hurlbert indices) were low in both stretches, although higher in the mesohaline, and for the most part the ecological condition was low (AMBI – AZTI Marine Biotic Index, MEDDOC – Mediterranean Occidental index, BENTIX biotic index, BO2A – Benthic Opportunistic Annelida Amphipod index). On the whole, the RC estimated for each index followed the same trend, being different for each stretch and below those found for lower sections of the estuary in other surveys.  相似文献   

18.
The European Marine Strategy Framework Directive requires EU Member States to prepare national strategies and manage their seas to achieve good environmental status (GES) by 2020. There are many multimetric indices proposed as indicators of the ecological quality of the benthic environment. Their functionality and utility are extensively discussed in the literature. Different frameworks are suggested for comparative assessments of indicators with no agreement on a standardized way of selecting the most appropriate one. In the current study, we apply signal detection theory (SDT) to evaluate the specificity and sensitivity of the Benthic Quality Index (BQI), its response to the eutrophication pressure, and its performance under the effects of estuarine water outflow. The BQI showed acceptable response to total nitrogen, total phosphorus and chlorophyll-a concentrations in the study area. Based on the results, we suggest using SDT for setting GES thresholds in a standardized way. This aids a robust assessment of the environmental status and supports differentiation between the quality classes.  相似文献   

19.
The Biotic Index based on Posidonia oceanica (BiPo) is a classification system for evaluation of the ecological status in Mediterranean coastal waters, developed in accordance with the EU Water Framework requirements. The aim of this study is to verify the applicability and reliability of the BiPo index to different geographical areas of the north-western Mediterranean (France, Spain and Italy), to understand whether such a classification system may be applied more extensively, as so far it has only been applied to coastal waters in Corsica. The ecological status determined for sites is verified against pressures revealed from satellite imagery and from trace metal contamination of plants, to identify the sources of pressure that may be responsible for a low ecological status. The results of this study indicate that: (i) the BiPo index responds reliably to pressures, in different areas of the Mediterranean; (ii) sites with an ecological quality ratio (EQR) close to the good/moderate boundary require particular attention to identify and reduce causes of deterioration; (iii) the support of chemical indicators, in this case metal contamination, is relevant to identify potential sources of pressure.  相似文献   

20.
The performance of several indices of benthic functioning, based on the traits of estuarine macro-invertebrates, was tested in the lower Mondego estuary (Portugal), whose two arms exhibit different disturbance levels related to hydromorphology. The results showed that some indices responded clearly to this type of disturbance and others not so well. We argue that the community-weighted mean trait values (CWM) in combination with the newly developed SR-FRED index provided the best overall picture of how the benthic communities might have been affected by hydromorphological disturbance. This study also showed that certain indices should be used with caution when dealing with communities with few and dominant species, such as in estuarine environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号