首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of the effect of nucleoside phosphates on the activity of cyanide-resistant oxidase in the mitochondria and submitochondrial particles of Yarrowia lipolytica showed that adenosine monophosphate (5'-AMP, AMP) did not stimulate the respiration of intact mitochondria. The incubation of mitochondria at room temperature (25 degrees C) for 3-5 h or their treatment with ultrasound, phospholipase A, and the detergent Triton X-100 at a low temperature inactivated the cyanide-resistant alternative oxidase. The inactivated alternative oxidase could be reactivated with AMP. The reactivating effect of AMP was enhanced by azolectin. Some other nucleoside phosphates also showed reactivating ability in the following descending order: AMP = GMP > GDP > GTP > MP > IMP. The apparent K(m) values for AMP in reactivation of the alternative oxidase of submitochondrial particles or mitochondria treated with Triton X-100 and incubated at 25 degrees C were calculated. Physiological aspects of activation of the alternative oxidase are discussed in connection with the impairment of electron transfer through the cytochrome pathway.  相似文献   

2.
The study of the effect of nucleoside phosphates on the activity of cyanide-resistant oxidase in the mitochondria and the submitochondrial particles of Yarrowia lipolytica showed that adenosine monophosphate (5'-AMP, AMP) did not stimulate the respiration of the intact mitochondria. The incubation of the mitochondria at room temperature (25 degrees C) for 3-5 h or their treatment with ultrasound, phospholipase A, and detergent Triton X-100 at a low temperature inactivated the cyanide-resistant alternative oxidase. The inactivated alternative oxidase could be reactivated by AMP. The reactivating effect of AMP was enhanced by azolectin. Some other nucleoside phosphates also showed reactivating ability in the following descending order. AMP = GMP > GDP > GTP > XMP > IMP. The apparent reaction rate constant Km for AMP upon the reactivation of the alternative oxidase of mitochondria treated with Triton X-100 or incubated at 25 degrees C was 12.5 and 20 microM, respectively. The Km for AMP upon the reactivation of the alternative oxidase of submitochondrial particles was 15 microM. During the incubation of yeast cells under conditions promoting the development of alternative oxidase, the content of adenine nucleotides (AMP, ADP, and ATP) in the cells and their respiration tended to decrease. The subsequent addition of cyanide to the cells activated their respiration, diminished the intracellular content of ATP three times, and augmented the content of AMP five times. These data suggest that the stimulation of cell respiration by cyanide may be due to the activation of alternative oxidase by AMP.  相似文献   

3.
The effect of cyanide, antimycin A, ethanol, and acetate on the induction of alternative oxidase in the yeast Yarrowia lipolytica VKM Y-155 sensitive to cyanide, in the presence of the aforementioned compounds led to the development of cyanide-resistant respiration, which could be suppressed by benzohydroxamic acid, an inhibitor of alternative oxidases. The incubation of cells with cyanide, ethanol, or acetate raised the intracellular pool of cAMP, which attained maximal values after a 2- to 3-min incubation, then rapidly decreased to the initial value and did not change over the next three hours of incubation. The possible role of cAMP in the induction of alternative oxidase in yeast cells is discussed.  相似文献   

4.
The degree of involvement of cyanide-resistant alternative oxidase in the respiration of Yarrowia lipolytica mitochondria was evaluated by comparing the rate of oxygen consumption in the presence of cyanide, which shows the activity of the cyanide-resistant alternative oxidase, and the oxidation rate of cytochrome c by ferricyanide, which shows the activity of the main cytochrome pathway. The oxidation of succinate by mitochondria in the presence of ferricyanide and cyanide was associated with oxygen consumption due to the functioning of the alternative oxidase. The subsequent addition of ADP or FCCP (an uncoupler of oxidative phosphorylation) completely inhibited oxygen consumption by the mitochondria. Under these conditions, the inhibition of the alternative oxidase by benzohydroxamic acid (BHA) failed to affect the reduction of ferricyanide at the level of cytochrome c. BHA did not influence the rate of ferricyanide reduction by the cytochrome pathway occurring in controlled state 4, nor could it change the phosphorylation quotient ATP/O upon the oxidation of various substrates. These data indicate that the alternative system is unable to compete with the cytochrome respiratory chain for electrons. The alternative oxidase only transfers the electrons that are superfluous for the cytochrome respiratory chain.  相似文献   

5.
The activity of the cyanide-resistant alternative oxidase (pathway) of Y. lipolytica mitochondria was studied as a function of the activity of the major, cyanide-sensitive, cytochrome pathway. The contribution of the alternative oxidase to the total respiration of mitochondria was evaluated by measuring the rate of oxygen consumption in the presence of cyanide (an inhibitor of the cytochrome pathway). The potential activity of the cytochrome pathway was evaluated spectrophotometrically, by measuring the oxidation rate of cytochrome c by ferricyanide, which accepts electrons from complex III (cytochrome c) of this pathway. The oxidation of succinate by mitochondria in the presence of ferricyanide and cyanide was accompanied by oxygen consumption due to the transfer of electrons through the alternative pathway. The subsequent addition of ADP or FCCP (an uncoupler of oxidative phosphorylation in the cytochrome pathway) completely inhibited the consumption of oxygen by the mitochondria. Under these conditions, the inhibition of the alternative pathway by benzohydroxamic acid failed to affect the transfer of electrons from cytochrome c to ferricyanide. Benzohydroxamic acid did not influence the rate of ferricyanide reduction by the cytochrome pathway occurring in controlled state 4, nor could it change the phosphorylation quotient ATP/O upon the oxidation of various substrates. These findings indicate that the alternative pathway is unable to compete with the cytochrome respiratory chain for electrons. The alternative pathway transfers only electrons that are superfluous for the cytochrome chain.  相似文献   

6.
7.
Conditions for L-lactate oxidase synthesis by the yeast Yarrowia lipolytica were investigated. The enzyme was found to be synthesized during growth on L-lactate in the exponential growth phase. L-lactate oxidase synthesis was also observed on glucose after adaptation to stress conditions (oxidative or thermal stress) during the stationary growth phase after glucose consumption. The cells grown on L-lactate exhibited high levels of antioxidant enzymes (catalase, superoxide dismutase, glucose-6-phosphate dehydrogenase, and glutathione reductase), which exceeded those of glucose-grown cells. Ultrastructurally, L-lactate-grown cells and the cells grown on glucose and adapted to various stress conditions were also found to be similar, with increased mitochondria, elevated number and size of peroxisomes, and formation of lipid and polyphosphate inclusions. In order to determine the intracellular localization of L-lactate oxidase, the cells were disintegrated by the lytic enzyme complex from Helix pomatia. Centrifugation of the homogenate in Percoll gradient resulted in the isolation of purified fractions of the native mitochondria and peroxisomes. L-lactate oxidase was shown to be localized in peroxisomes.  相似文献   

8.
9.
Extracellular RNase produced by Yarrowia lipolytica   总被引:2,自引:2,他引:2       下载免费PDF全文
Production of extracellular RNase(s) by Yarrowia lipolytica CX161-1B was examined in media between pHs 5 and 7. RNase production occurred during the exponential growth phase. High-molecular-weight nitrogen compounds supported the highest levels of RNase production. Several RNases were detected in the supernatant medium. Based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the RNases had estimated molecular weights of 45,000, 43,000, and 34,000. It was found that Y. lipolytica secretes only one RNase (the 45,000-molecular-weight RNase) and that the 43,000 and 34,000-molecular-weight RNases are degradation products of this RNase. The alkaline extracellular protease secreted by Y. lipolytica was shown to have a major role in the 45,000- to 43,000-molecular-weight conversion, and it was demonstrated that the 45,000-molecular-weight RNase could be purified from a mutant which does not produce the alkaline extracellular protease. Purification of the RNase from a wild-type strain resulted in purification of the 43,000-molecular-weight RNase. This RNase was a glycoprotein with a molecular weight of 44,000 as estimated by gel filtration, an isoelectric point of pH 4.8, and a pH optimum between 6.5 and 7.0.  相似文献   

10.
The hydrocarbon utilizing yeast Yarrowia lipolyyica NCYC 1421 produces biotin and its vitamers when grown on glucose in biotin-free media. Levels of production can be influenced by the medium composition. Growth in the presence of longchained fatty acids greatly increases biotin vitamer production. The biotin vitamers produced are normally dethiobiotin and 7-keto, 8-aminopelargonic acid. The addition of succinic acid at 0.5 g per litre causes the vitamer 7, 8-diaminopelargonic acid to be produced at high levels. The biotin antagonist α-dehydrobiotin inhibits the growth of Yarrowia lipolytica . Mutants can be readily isolated which show resistance to α-dehydrobiotin, but these do not produce greater amounts of biotin or its vitamers.  相似文献   

11.

Background

Biosynthesis of nanoparticles has received increasing attention due to the growing need to develop safe, time-effective and environmentally friendly technologies for nano-materials synthesis. This paper reports the one pot green synthesis of silver nanoparticles (AgNPs) using the leaf bud extract of a mangrove plant, Rhizophora mucronata and their antimicrobial effects against aquatic pathogens. Highly stable AgNPs were synthesized by treating the mangrove leaf bud extract with aqueous silver nitrate solution at 15?psi pressure and 121°C for 5 minutes.

Results

The biosynthesized AgNPs were characterized by UV-visible spectrum, at 426?nm. The X-Ray Diffraction (XRD) pattern revealed the face-centered cubic geometry of AgNPs. Fourier Transform Infra Red (FTIR) spectroscopic analysis was carried out to identify the possible biomolecules responsible for biosynthesis of AgNPs from the leaf bud extract. The size and shape of the well-dispersed AgNPs were documented with the help of High Resolution Transmission Electron Microscopy (HRTEM) with a diameter ranged from 4 to 26?nm. However a maximum number of particles were observed at 4?nm in size. The antibacterial effects of AgNPs were studied against aquatic pathogens Proteus spp., Pseudomonas fluorescens and Flavobacterium spp., isolated from infected marine ornamental fish, Dascyllus trimaculatus.

Conclusion

This study reveals that the biosynthesized AgNPs using the leaf bud extract of a mangrove plant (R. mucronata) were found equally potent to synthetic antibiotics. The size of the inhibition zone increases when the concentration of the AgNPs increased and varies according to species.  相似文献   

12.
Biotechnology Letters - Nervonic acid (cis-15-tetracosenoic acid, 24:1Δ15) is a long chain monounsaturated fatty acid, mainly exists in white matt er of the human brains. It plays an important...  相似文献   

13.
14.
beta-Oxidation is a cyclic pathway involved in the degradation of lipids. In yeast, it occurs in peroxisomes and the first step is catalyzed by an acyl-CoA oxidase (Aoxp). The yeast Yarrowia lipolytica possesses several genes (POX) coding for Aoxps. This study is based on the factorial analysis of results obtained with the many POX derivative strains that have been constructed previously. The effect of interactions between Aoxps on the acyl-CoA oxidase (Aox) activity was important even at the second order. We then investigated the effect of Aox activity on growth and lactone production. Aox activity was correlated with acidification of the medium by cells and with cellular growth but not with lactone production, although Aox activity on short chains was inversely correlated with lactone accumulation. Due to the poor correlation between Aox activity and lactone production, the modeling of this parameter gave no satisfactory results but growth depending on Aox activity was modeled.  相似文献   

15.
AIMS: To study the mechanism of production of brown pigments from tyrosine in the yeast Yarrowia lipolytica. METHODS AND RESULTS: Pigment formation was followed during growth in tyrosine medium, and the presence of the pigment precursor in the medium was assessed by evaluating pigment formation after removing the cells at different times of incubation. It was observed that the pigment precursor accumulated outside the cells during the exponential phase of growth, but pigment formation only occurred during the stationary phase of growth and resulted from the oxidation of the precursor. Pigment formation was repressed by glucose and L-glutamine, and promoted by lactic acid, L-asparagine and glycine. Spectra of 1H and 13C-NMR revealed that the brown pigment was derived from tyrosine and was a polymer composed of a core of aromatic residues. CONCLUSION: The results indicate that pigments result from the extracellular accumulation and auto-oxidation of an intermediate of tyrosine catabolism. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report on the mechanism of pigment production from tyrosine in a yeast species.  相似文献   

16.
This experimental study reports about production selectivity in the fermentation of glucose to citric acid by Yarrowia lipolytica as a function of substrate concentration. Batch runs featuring biomass growth and one or two citric acid production phases were carried out in a 15-l stirred tank fermentor. The presented results demonstrate that working at high initial substrate concentration in the production phase is beneficial both in terms of a higher production rate of citric acid, the desired metabolite (reaching 0.077 h(-1)) and of a higher utilization degree of the employed carbon source (yield up to 0.384 g(c.a.)/g(glucose)). The production rate of isocitric acid, the major undesired metabolite, was found to be practically constant over the tested initial substrate concentration range.  相似文献   

17.
We reported previously on the function of acyl coenzyme A (acyl-CoA) oxidase isozymes in the yeast Yarrowia lipolytica by investigating strains disrupted in one or several acyl-CoA oxidase-encoding genes (POX1 through POX5) (H. Wang et al., J. Bacteriol. 181:5140-5148, 1999). Here, these mutants were studied for lactone production. Monodisrupted strains produced similar levels of lactone as the wild-type strain (50 mg/liter) except for Deltapox3, which produced 220 mg of gamma-decalactone per liter after 24 h. The Deltapox2 Deltapox3 double-disrupted strain, although slightly affected in growth, produced about 150 mg of lactone per liter, indicating that Aox2p was not essential for the biotransformation. The Deltapox2 Deltapox3 Deltapox5 triple-disrupted strain produced and consumed lactone very slowly. On the contrary, the Deltapox2 Deltapox3 Deltapox4 Deltapox5 multidisrupted strain did not grow or biotransform methyl ricinoleate into gamma-decalactone, demonstrating that Aox4p is essential for the biotransformation.  相似文献   

18.
We produced electrophoretic karyotypes of the reference strain E150 and of seven other isolates from different geographical origins to study the genomic organization of the dimorphic yeast Yarrowia lipolytica. These karyotypes differed in the number and size of the chromosomal bands. The karyotype of the reference stain E150 consisted of five bands of between 2.6 and 4.9 Mb in size. This strain contained at least five rDNA clusters, from 190 to 620 kb in size, which were scattered over most of the chromosomes. The assignment of 43 markers, including rRNA genes and three centromeres, to the E150 bands defined five linkage groups. Hybridization to the karyotypes of other isolates with pools of markers of each linkage group showed that linkage groups I, II, IV and V were conserved in the strains tested whereas group III was not and was split between at least two chromosomes in most strains. Use of a meganuclease I-SceI site targeted to one locus of E150 linkage group III showed that two chromosomes actually comigrated in band III of this strain. Our results are compatible with six chromosomes defining the haploid complement of strains of Y. lipolytica and that, despite an unprecedented chromosome length polymorphism, the overall structure of the genome is conserved in different isolates. Received: 27 March 1997; in revised form: 8 July 1997 / Accepted: 9 July 1997  相似文献   

19.
Cytokinin oxidase/dehydrogenase (CKO/CKX) is a flavoenzyme, which irreversibly inactivates cytokinins by severing the isoprenoid side chain from the adenine/adenosine moiety. There are several genes coding for the enzyme in maize (Zea mays). A Z. mays CKO1 cDNA was cloned in the yeast Yarrowia lipolytica to achieve heterologous protein expression. The recombinant ZmCKO1 was recovered from cultures of transformed yeasts and purified using several chromatographic steps. The enzyme was obtained as a homogeneous protein in a remarkably high-yield and its molecular and kinetic properties were characterized. The enzyme showed a molecular mass of 69 kDa, pI was 6.3. Neutral sugar content of the molecule was 22%. Absorption and fluorescence spectra were in accordance with the presence of FAD as a cofactor. Peptide mass fingerprinting using MALDI-MS correctly assigned the enzyme in MSDB protein database. The enzyme showed a relatively high degree of thermostability (T50=55 degrees C for 30 min incubation). The following pH optimum and K(m) values were determined for natural substrates (measured in the oxidase mode): pH 8.0 for isopentenyl adenine (K(m)=0.5 microM), pH 7.6 for isopentenyl adenosine (K(m)=1.9 microM), pH 7.9 for zeatin (K(m)=1.5 microM) and pH 7.3 for zeatin riboside (K(m)=2.0 microM). ZmCKO1, functioning in the oxidase mode, catalyzes the production of one molecule of H2O2 per one molecule of cytokinin substrate. This finding represents clear evidence for the existence of dual enzyme functionality (oxygen serves as a cosubstrate in the absence of better electron acceptors).  相似文献   

20.
Extensive perexisome proliferation during growth on oleic acid, combined with the availability of excellent genetic tools, makes the dimorphic yeast, Yarrowia lipolytica, a powerful model system to study the molecular mechanisms involved in peroxisome biogenesis. A combined genetic, biochemical, and morphological approach has revealed that the endoplasmic reticulum (ER) plays an essential role in the assembly of functional peroxisomes in this yeast. The trafficking of some membrane proteins to the peroxisomes occurs via the ER, results in their glyco-sylation in the ER lumen, does not involve transit through the Golgi, and requires the products of the SEC238, SRP54, PEX1, and PEX6 genes. The authors' data suggest a model for protein import into peroxisomes via two subpopulations of ER-derived vesicles that are distinct from secretory vesicles. A kinetic analysis of the trafficking of peroxisomal proteins in vivo has demonstrated that membrane and matrix proteins are initially targeted to multiple vesicular precursors that represent intermediates in the assembly pathway of peroxisomes. The authors have also recently identified a novel cytosolic chaperone, Pex20p, that assists in the oligomerization of thiolase in the cytosol and promotes its targeting to the peroxisome. These data provide the first evidence that a chaperone-assisted folding and oligomerization of thiolase in the cytosol is required for the import of this protein into the peroxisomal matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号