首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We surveyed pseudoscorpion fauna in the soil organic layer in managed and abandoned secondary forests in Hiroshima Prefecture, Japan, and studied the effects of forest management on the pseudoscorpions. The vegetation structure was generally more developed in abandoned stands than in managed stands. The depth of the soil organic layer was not significantly different between the two stand types. We observed a total of seven pseudoscorpion species belonging to five genera. Pseudoscorpion species richness and densities were higher in abandoned stands than in managed stands. We did not find any pseudoscorpions in stands where the summed vegetation cover was less than 150%.An erratum to this article can be found at  相似文献   

2.
It is well known that the recovery of abandoned tropical pastures to secondary rainforest benefits from the arrival of seeds from adjacent rainforest patches. Less is known, however, about how the structural attributes of adjacent rainforest (e.g. tree density, canopy cover and tree height) impact seed rain patterns into abandoned pastures. Between 2011 and 2013, we used seed traps and ground seed surveys to track the richness and abundance of rainforest seeds entering abandoned pastures in Australia's wet tropics. We also tested how seed rain diversity is related to the distance from forest, the proportion of forest cover in the landscape and several structural attributes of adjacent forest patches, specifically average tree height, canopy cover, tree species richness and density. Almost no seeds were captured in elevated pasture seed traps, even near forest remnants. Abundant forest seeds were found in ground surveys but only within 10 m of forest edges. In ground surveys, seeds from wind‐dispersed species were more abundant, but less species rich, than animal‐dispersed species. A survey of pasture seedling recruits suggested that some forest seeds must be dispersing more than 10 m into pasture at very low frequencies, but only a few species are establishing there. Recruits were predominantly animal‐dispersed not wind‐dispersed species. In addition to distance from forest and the proportion of forest within a 100‐ to 200‐m radius of sampling sites, the richness and density of adjacent forest trees were the most important factors for explaining the probability of seed occurrence in abandoned pastures. Results suggest that without some restoration assistance, the recovery of abandoned pastures into secondary rainforest in Australia's tropical rainforests will likely be limited, at least in part, by a very low rate of seed dispersal away from forest edges and by the diversity and density of trees in adjacent remnant forests.  相似文献   

3.
Aim Our objectives were to compare understorey plant community structure among forest types, and to test hypotheses relating understorey community structure within lower montane and subalpine forests to fire history, forest structure, fuel loads and topography. Location Forests on the North Rim of Grand Canyon National Park, Arizona, USA. Methods We measured understorey (< 1.4 m) plant community structure in 0.1‐ha plots. We examined differences in univariate response variables among forest types, used permutational manova to assess compositional differences between forest types, and used indicator species analysis to identify species driving the differences between forest types. We then compiled sets of proposed models for predicting plant community structure, and used Akaike's information criterion (AICC) to determine the support for each model. Model averaging was used to make multi‐model inferences if no single model was supported. Results Within the lower montane zone, pine–oak forests had greater understorey plant cover, richness and diversity than pure stands of ponderosa pine (Pinus ponderosa P. & C. Lawson var. scopulorum Engelm.). Plant cover was negatively related to time since fire and to ponderosa pine basal area, and was highest on northern slopes and where Gambel oak (Quercus gambelii Nutt.) was present. Species richness was negatively related to time since fire and to ponderosa pine basal area, and was highest on southern slopes and where Gambel oak was present. Annual forb species richness was negatively related to time since fire. Community composition was related to time since fire, pine and oak basal area, and topography. Within subalpine forests, plant cover was negatively related to subalpine fir basal area and amounts of coarse woody debris (CWD), and positively related to Engelmann spruce basal area. Species richness was negatively related to subalpine fir basal area and amounts of CWD, was positively related to Engelmann spruce basal area, and was highest on southern slopes. Community composition was related to spruce, fir and aspen basal areas, amounts of CWD, and topography. Main conclusions In montane forests, low‐intensity surface fire is an important ecological process that maintains understorey communities within the range of natural variability and appears to promote landscape heterogeneity. The presence of Gambel oak was positively associated with high floristic diversity. Therefore management that encourages lightning‐initiated wildfires and Gambel oak production may promote floristic diversity. In subalpine forests, warm southern slopes and areas with low amounts of subalpine fir and CWD were positively associated with high floristic diversity. Therefore the reduction of CWD and forest densities through managed wildfire may promote floristic diversity, although fire use in subalpine forests is inherently more difficult due to intense fire behaviour in dense spruce–fir forests.  相似文献   

4.
Effects of ski resort management on vegetation   总被引:2,自引:0,他引:2  
We investigated species composition and characteristics of plant communities in plots at seven site types within a ski resort: forests, an abandoned ski slope, an area under the gondola lines, forest waterfronts, open waterfronts, edges of ski slopes, and an active ski slope. On the abandoned ski slope, under the gondola lines, at the edges of ski slopes, and on the ski slope, canopy closure was low, tall herbs were present, and species diversity was high. Some wetland species were present at waterfront plots. Differential species composition was caused by vegetation cutting, which was necessary to manage the ski resort. We found various plants, including herbs, some rarely seen because their habitats have decreased. Despite their negative effects, such as surface-soil erosion and magnification of plant size due to the use of ammonium sulfate, ski resorts can be important plant habitats with highly diverse species composition.  相似文献   

5.
《农业工程》2022,42(6):653-660
The present study was undertaken in the natural temperate Himalayan forests of Himachal Pradesh, India, to assess the tree species composition and diversity. For this purpose, six major forest types (FT) viz., FT1- Upper Himalayan Pinus roxburghii forest, FT2- Quercus leucotrichophora forest, FT3- Low-level P. wallichiana forest, FT4- Moist C. deodara forest, FT5- Western Mixed Coniferous Forest, FT6- Pinus gerardiana forest were selected. Detailed sampling was carried out in these forest types, and the sample plots in each forest type were laid out using the stratified random approach. Tree stem density varied from 191.11 N ha?1 (FT6) to 441.11 N ha?1 (FT2), whereas the tree total basal cover varied from 20.01 m2 ha?1 (FT6) to 47.59 m2 ha?1 (FT5). The diversity indices reflected that a total of 21 tree species (16 genera, 11 families) were identified, with tree species richness ranging from 3 (FT6) to 9 (FT1 & FT5). The forest type FT5 recorded the maximum Shannon index of diversity (2.36), Simpson Index of diversity (0.75), Margalef's Index of richness (1.37), pielou equitability (0.74), menheink index of species richness (0.49), whereas the highest Shannon Index of diversity (0.73) and species heterogeneity (0.85) in FT6 forest type. Furthermore, dominance-diversity (d-d) curves drawn that all the six forest types showed geometric curves reveals that one or two tree species are dominant in a particular forest type. Simultaneously, the research area's species diversity, tree stem density, and tree total basal cover were equivalent to those seen in other sections of Western Himalayas.  相似文献   

6.
Freléchoux F., Meisser M. and Gillet F. 2007. Secondary succession and loss in plant diversity following a grazing decrease in a wooded pasture of the central Swiss Alps. Bot. Helv. 117: 37 – 56. Reduced cattle grazing pressure in the Alps has caused the reforestation of many subalpine pastures during the last decades. To understand the dynamics of natural reforestation and to evaluate how this change affects plant species diversity, we described the vegetation of a wooded pasture in the central Swiss Alps (Sembrancher, Valais) using the integrated synusial method. Based on stratified vegetation relevés in 27 plots,we defined 11 community types at the synusial level (two tree-layer, five shrub-layer, and four herb-layer synusiae), and four community types at the phytocoenosis level (pasture, tall forbs and scrub, wooded pasture and forest). The spatial distribution of these four phytocoenoses suggests that they represent successional stages after abandonment, and that the pathway of vegetation succession depends on the aspect. We suppose that on northern oriented, cool and shady locations, abandoned pastures first develop towards tall-forb meadows and scrub with Alnus viridis, and then to a preforested stage with Picea abies and Larix decidua. In contrast, on western oriented, warm and sunny location, Larix decidua (mainly) and Picea abies directly colonize the abandoned pastures, but further succession finally leads to the same pre-forested stage as on northern slopes. Plant species richness was highest in open areas and decreased by 25% as tree cover increased from 6% to 65%. According to our successional model, plant species diversity is lost more rapidly on northern slopes (with species-poor green alder scrub) than on western slopes (with species-rich young larch forests), suggesting that northern slopes most urgently need an appropriate grazing management. Manuscrit accepté le 28 mars 2007  相似文献   

7.
Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2–3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests (“control plots”). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields.  相似文献   

8.
Deer overabundance reduces forest ground-layer vegetation and can cause cascading impacts on a forest ecosystem. To predict these effects, we must elucidate the relationship between deer density and the status of ground-layer vegetation. This relationship was studied in the Boso Peninsula, where the deer population density exhibits a clear geographical gradient. We examined species richness and cover of ground-layer vegetation at several cedar plantations and hardwood forests in the Boso Peninsula. We also examined whether deer impacts were altered by light condition, soil water content and forest type (cedar and hardwood). Species richness of ground-layer vegetation was maximized at an intermediate level of deer density, suggesting an intermediate disturbance effect. This phenomenon was compatible with the observation that evergreen species, which were competitive dominants, decreased with increasing deer density, whereas less competitive deciduous species increased until herbivory was intermediate. As deer density increased, cover of ground-layer vegetation gradually decreased, but species unpalatable to deer increased in abundance, suggesting indirect positive effects of deer for unpalatable species. Cedar plantations tended to have greater species richness and ground-layer cover than hardwood forests with similar deer levels. Canopy openness, an indicator of light conditions, increased species richness of hardwood forests and ground-layer cover of cedar plantations, even under deer herbivory. Topographic wetness index, an indicator of soil water content, significantly increased the ground-layer cover of cedar plantations under deer herbivory. These results emphasize the importance of environmental productivity and forest type in the management of ground-layer vegetation experiencing deer overabundance.  相似文献   

9.
Liana dynamics in secondary and mature forests are well known in tropical areas dominated by native tree species. Outside the tropics and in secondary forests invaded by exotic species, knowledge is scarce. In this study, we compare liana communities between secondary and mature forests dominated by native species in a subtropical montane area of Sierra de San Javier, Tucuman, Argentina. Additionally, we evaluate changes of liana communities in secondary forests with increasing densities of Ligustrum lucidum and Morus alba, two of the most invasive exotic trees of the area. We surveyed liana species richness and density in three 30-year secondary patches, four 60-year secondary patches, and four mature patches dominated by native tree species, to analyze changes in liana communities with forest age. Within each patch, we sampled 10–25 20 × 20 m quadrats. Additionally, we surveyed liana density and species richness in secondary forest patches with different densities of L. lucidum and M. alba. In native-dominated forests, liana species richness increased and showed a tendency of increasing basal area from 30-year secondary forests to mature forests. Liana density was highly variable, and most of the species were shared between native-dominated secondary and mature forests. Liana density and species richness decreased with L. lucidum density, whereas in secondary forests highly dominated by M. alba, lianas increased in density. Overall, lianas followed different pathways influenced by native forest succession and exotic tree invasions.  相似文献   

10.
Facilitation is an important ecological mechanism with potential applications to forest restoration. We hypothesized that different facilitation treatments, distance from the forest edge and time since initiation of the experiment would affect forest restoration on abandoned pastures. Seed and seedling abundance, species richness and composition were recorded monthly during two years under isolated trees, bird perches and in open pasture. Seed arrival and seedling establishment were measured at 10 m and 300 m from the forest edge. We sampled a total of 131,826 seeds from 115 species and 487 seedlings from 46 species. Isolated trees and bird perches increased re-establishment of forest species; however, species richness was higher under isolated trees. Overall, abundance and richness of seeds and seedlings differed between sampling years, but was unaffected by distance from the forest edge. On the other hand, species composition of seeds and seedlings differed among facilitation treatments, distance from the forest edge and between years. Seedling establishment success rate was larger in large-seeded species than medium- and small-seeded species. Our results suggest that isolated trees enhance forest re-establishment, while bird perches provide a complementary effort to restore tree abundance in abandoned pastures. However, the importance of seed arrival facilitation shifts toward establishment facilitation over time. Arriving species may vary depending on the distance from the forest edge and disperser attractors. Efforts to restore tropical forests on abandoned pastures should take into account a combination of both restoration strategies, effects of time and proximity to forest edge to maximize regeneration.  相似文献   

11.
Epiphytic lichen biota on Picea abies and Pinus sylvestris in Estonia was studied. Twenty-one spruce and 21 pine sample plots were located in old forests with long forest continuity, and 12 spruce and 12 pine sample plots in young first-generation forests (<100 years). Altogether 103 lichen species were recorded on the 330 sampled trees. Lichen species richness per plot was significantly higher in old forests in case of both tree species; 31 lichen species, including red-listed and protected species, were found only in old forests. Tree age had a positive effect on lichen species richness on tree stem in old and young spruce forests and in young pine forests. Tree age also had an effect on the presence of several species. Both tree age and forest continuity affected lichen species composition. Arthonia leucopellaea, Chrysothrix spp. and Lecanactis abietina were found in at least every third old spruce or pine forest and in no young forests, and can be regarded as good indicators of old coniferous forests with long continuity in Estonia.  相似文献   

12.
Ski slope vegetation at Snoqualmie Pass in Washington State, USA, was surveyed in order to identify community types and to compare it with vegetation development patterns in Japan. Ski slopes in Japan, most of which were constructed after 1960, underwent heavy land recontouring, while those at Snoqualmie Pass were constructed before 1950 with less modification. Three points apply to Japanese ski slope vegetation and differentiate these slopes from those at Snoqualmie Pass: (i) grasslands of introduced species are widespread and persistent; (ii) unvegetated patches are uncommon; and (iii) wetland vegetation has developed. These differences are mainly derived from the intensity of human impact, history of the slope and its scale: namely, ski slopes in Washington are older and larger than those in Japan. Ski slope vegetation in Washington was primarily differentiated by a soil moisture gradient. The large size of Washington ski slopes permitted the inclusion and development of wetland habitats, whereas most ski slopes in Japan are constructed on ridges and do not contain wetlands. Most introduced species in Japan are eliminated soon after seeding. In contrast, the long-term management of ski slopes decreased soil erosion and/or unvegetated patches in Washington and created relatively permanent grasslands composed of introduced species. Tsuga heterophylla and Abies amabilis were found established on the ski slopes in Washington, whereas in Japan the pioneer tree species are shade-intolerant broadleaved species. These differences may be a result of the different disturbance histories of ski slopes in the two countries. In addition, along with the conifers, early successional forbs such as Anaphalis margaritacea and Epilobium angustifolium are well established on Washington ski slopes. Results show that disturbances created by ski slope development greatly affect the vegetation, even on older, less heavily impacted ski slopes.  相似文献   

13.
Question: How are the effects of mineral soil properties on understory plant species richness propagated through a network of processes involving the forest overstory, soil organic matter, soil nitrogen, and understory plant abundance? Location: North‐central Arizona, USA. Methods: We sampled 75 0.05‐ha plots across a broad soil gradient in a Pinus ponderosa (ponderosa pine) forest ecosystem. We evaluated multivariate models of plant species richness using structural equation modeling. Results: Richness was highest at intermediate levels of understory plant cover, suggesting that both colonization success and competitive exclusion can limit richness in this system. We did not detect a reciprocal positive effect of richness on plant cover. Richness was strongly related to soil nitrogen in the model, with evidence for both a direct negative effect and an indirect non‐linear relationship mediated through understory plant cover. Soil organic matter appeared to have a positive influence on understory richness that was independent of soil nitrogen. Richness was lowest where the forest overstory was densest, which can be explained through indirect effects on soil organic matter, soil nitrogen and understory cover. Finally, model results suggest a variety of direct and indirect processes whereby mineral soil properties can influence richness. Conclusions: Understory plant species richness and plant cover in P. ponderosa forests appear to be significantly influenced by soil organic matter and nitrogen, which are, in turn, related to overstory density and composition and mineral soil properties. Thus, soil properties can impose direct and indirect constraints on local species diversity in ponderosa pine forests.  相似文献   

14.
To clarify the habitat requirements of the near-threatened butterfly, Sasakia charonda (Lepidoptera, Nymphalidae), we studied the distribution pattern of its host trees, Celtis sinensis and Celtis jessoensis, and the utilization patterns of various vegetation types by this butterfly in the Oofukasawa River basin in Hokuto City, Yamanashi Prefecture, central Japan. Two species of host trees, C. sinensis and C. jessoensis (height = 2 m or more) were found in riparian forests on sandbanks (hereinafter, riparian forest), in forest regenerated after landslides on valley walls (landslide tracks), in secondary deciduous forests consisting mainly of Quercus acutissima or Quercus serrata and in forests established at abandoned paddy fields and their periphery, where weeds and shrubs used to be mown frequently to avoid shade on the paddies before their abandonment. This suggests that they are pioneer species, and their distribution and regeneration depend on natural and/or human disturbances. Host trees above 2 m were preferred by larvae, and there were very few such trees in secondary forests. More overwintering larvae occurred in riparian forests than at other sites. The number of S. charonda adults was highest at the edge of riparian forests, and we observed a variety of behaviors such as puddling, chasing and mating there. Although the number of adult butterflies was smaller inside and at the edge of secondary forests than in riparian forests, puddling by males and roosting on the trunk of Q. acutissima or Q. serrata by females were observed more frequently there than in riparian forests. Thus, we conclude that landscapes including both riparian forests with natural disturbance and secondary forests with Quercus trees are necessary to maintain host Celtis trees and S. charonda populations.  相似文献   

15.
We investigated the distribution pattern of centipedes (Chilopoda) in four primeval forests of the western Carpathians, central Slovakia. The forests are located in two different mountain ranges (Kremnické vrchy and Pol’ana Mountains), which are exposed on either the southern (Boky, Rohy) or northern slopes (Pol’ana, Badín). In these forests, the influence of coarse woody debris (CWD) on centipede distribution was studied, by distinguishing sampling sites on the forest floor, close to CWD (c-CWD) and distant from CWD (d-CWD). In total, we collected 2,706 individuals from 20 species of centipedes. Average species richness and number of individuals per forest ranged from 8 to 12 species/m2 and from 244 to 486 individuals/m2. The oak forests on south facing slopes harboured several species, which did not occur in the more northern exposed fir-beech forests. Number of species as well as individuals, however, varied more within than between individual forests. Increase of species number and density was mainly caused by CWD and was more pronounced on the southern slopes (P<0.001), characterized by high temperatures and low precipitation, than on the northern slopes (n.s. to P<0.01), characterized by low temperatures and high precipitation. It was found that CWD did not generally increase (species) diversity.  相似文献   

16.
In recent years, there have been considerable efforts to restore degraded tropical montane forests through active restoration using indigenous tree species. However, little is known about how these species used for restoration influence other species. In this study, two potential restoration species, Albizia gummifera and Neoboutonia macrocalyx, are investigated with regard to the relationship between their density and the abundance and richness of other plant species. The study was conducted in a degraded forest consisting of disturbed transition zones and secondary forest. Our results show positive relationships between the density of A. gummifera and the abundance of tree seedling and sapling richness in the transition zones and in the secondary forest. Shrub richness was negatively related to the density of A. gummifera. Abundance and richness of tree saplings and shrubs were positively related to N. macrocalyx density both in the transition zones and in the secondary forest. Herb species richness declined with N. macrocalyx density in the transition zones but increased with N. macrocalyx density in the secondary forest. The positive relationships between the density of the two tree species and species richness of other woody species suggest that both A. gummifera and N. macrocalyx can be suitable for active restoration of degraded mountain forests within their natural range.  相似文献   

17.
The distribution of large ungulates in space is in large extent driven by the availability of forage, which in temperate forests depends on light availability, and associated plant diversity and cover. We hypothesized that the increased number of GPS fixes of European bison (Bison bonasus L.) in usually avoided spruce forests was an effect of higher plant species richness and cover of the forest floor, which developed owing to increased light availability enhanced by spruce mortality. We carried out 80 forest floor plant surveys combined with tree measurement on plots chosen according to the number of GPS locations of GPS‐collared European bison. The mean plant species richness per plot was higher on intensively visited plots (IV) than rarely visited (RV) plots (30 ± 5.75 (SD) versus. 26 ± 6.19 (SD)). The frequency of 34 plant species was higher on IV plots, and they were mainly herbaceous species (32 species), while a significant part of 13 species with higher frequency on RV plots was woody plants (5 species). The species richness of forbs was higher on IV plots, while other functional groups of plants did not differ. Tree stem density on the IV plots was lower than on the RV plots (17.94 ± 6.73 (SD) versus 22.9 ± 7.67 (SD)), and the mean value of Ellenberg's ecological indicator for light availability for all forest floor plant species was higher on IV plots. European bison visiting mature spruce forests was driven by higher forest floor plant cover and species richness, and high share and species richness of forbs. The two latter features may be translated into higher quality and diversity of forage. In spite of morphological characteristics suggesting that European bison is a species of mixed (mosaic) habitats, it seems to be well adapted to thrive in diverse forests.  相似文献   

18.
We investigated plant species diversity as it related to stand structure and landscape parameters in abandoned coppice forests in a temperate, deciduous forest area of central Japan, where Fagus crenata was originally dominant. The species occurring in the study plots were classified into habitat types based on a statistical analysis of their occurrence bias in particular habitats (e.g., primary forest, coniferous plantation) in the landscape studied. The relationships between stand structure, which reflected the gradient of management, and forest floor plant species diversity (H and J) and richness (number of species per unit area) were not significant. However, these factors did influence the forest floor plant composition of the different types of habitat. According to the multiple regression analysis, species diversity and the richness of forest floor plants was affected by landscape parameters rather than by stand structure. For trees, species richness was mainly affected by the relative dominance of F. crenata, which is one of the stand structure parameters that decreases with intensive management. This is probably because many of the tree species that are characteristic of coppice forests increase after F. crenata have been eliminated by management; these species are not dominant in the original forest, where they are suppressed by F. crenata, the shade-tolerant dominant species. The species diversity (H and J) of trees was positively correlated with some landscape parameters, including the road density around the study plot, which may be associated with the intensity of management activity. The number of disturbance-tolerant species increased with increasing road density. Stand structure mainly affected disturbance-intolerant forest floor plant species and disturbance-tolerant tree species. Thus, the species diversity responses differed between forest floor plants and trees. The impact of forest management on species diversity was more prominent for forest floor plants.  相似文献   

19.
Although deforestation continues to be a major threat to tropical biodiversity, abandonment of agricultural land in Puerto Rico provides an opportunity to study long-term patterns of secondary forest regeneration. Using aerial photographs from 1937, 1967, and 1995, we determined land-use history for 2443 ha in the Cayey Mountains. Pastures were the dominant land cover in 1937 and <20% of the area was classified as forest. Between 1937 and 1995, forest cover increased to 62% due to widespread abandonment of agriculture. To examine the effect of historic land use on current forest structure and species composition, we sampled secondary forests in 24 abandoned pastures, 9 abandoned coffee plantations and 4 old-growth forest sites. Sites were located on two soil types along an elevational gradient (125–710 m) and included a chronosequence from 4 to over 80 years old. After 25–30 years, basal area and species richness in secondary forest sites derived from abandoned pastures and coffee plantations were similar to old-growth forest sites. The species composition of secondary forests derived from abandoned pastures and coffee plantations remained distinct from old-growth forest. In addition to historic land use, age and elevation were important environmental variables explaining variation in secondary forest species composition. Non-indigenous species were common in recently abandoned pastures and coffee plantations, but their importance declined in the older sites. This study demonstrates that secondary forests on private land can be an important component of the conservation of tropical tree biodiversity. Received 16 June 1999; Accepted 8 October 1999.  相似文献   

20.
Lichen epiphytes are applied as excellent environmental indicators worldwide. However, very little is known about epiphytic lichen communities and their response to forest dynamics in subtropical China. This paper proposes the applications of the cover, diversity, and functional traits of epiphytic lichens to assess environmental changes associated with succession in subtropical forests of southwest China. Bole lichens were sampled from 120 plots of eight representative forest types in the Ailao Mountains. Total cover, species richness, diversity and community structure of bole lichens differed significantly among forest types, and the highest cover and diversity occurred in the Populus bonatii secondary forest (PBSF). Sixty-one indicator species were associated with particular forest types and more than 50% occurred in the PBSF. Both cover and diversity of most lichen functional groups varied regularly during forest succession. Lichen pioneer species were not displaced by competitively superior species as succession proceeds and cyanolichens were more prevalent in secondary forests. The results also highlight the importance of habitat variables such as canopy openness, host diversity, forest age, tree size, the size of the largest tree, tree density, and basal area on the lichen community. Consequently, our findings support the notion that epiphytic lichens, in terms of cover, diversity, species composition and functional traits can be used as effective indicators for large-scale and long-term forest monitoring. More importantly, the narrowly lobed foliose group was the best candidate indicator of environmental conditions in this region. The combined application of lichen indicator species and functional groups seemed to be a more reliable and more powerful method for monitoring forest dynamics in subtropical montane ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号