首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In previous investigations on mixing in a horizontal rotating tubular bioreactor (HRTB) the structured “spiral flow” model was developed which contained four adjustable parameters [1, 2]. In order to incorporate the mixing model in a semifundamental scale-up procedure it was necessary to make a relation between the adjustable model parameters and process parameters of the bioreactor expressed as dimensionless numbers. Mathematical equations which relate adjustable model parameters with dimensionless numbers were developed by non-linear and surface regression methods. These equations were applied to develop the prediction systems for adjustable model parameters. In total, nine systems of equations for the prediction of the adjustable model parameters were established and examined by simulation. Three of them (SC-2, SC-6 and SC-9) were selected as adequate to describe the mixing performance of HRTB in a wide range of process conditions.  相似文献   

3.
The aim of this work was to investigate the possibility of conducting a continuous aerobic bioprocess in a horizontal rotating tubular bioreactor (HRTB). Aerobic oxidation of acetate by the action of a mixed microbial culture was chosen as a model process. The microbial culture was not only grown in a suspension but also in the form of a biofilm on the interior surface of HRTB. Efficiency of the bioprocess was monitored by determination of the acetate concentration and chemical oxygen demand (COD). While acetate inlet concentration and feeding rate influenced efficiency of acetate oxidation, the bioreactor rotation speed did not influence the bioprocess dynamics significantly. Gradients of acetate concentration and pH along HRTB were more pronounced at lower feeding rates. Volumetric load of acetate was proved to be the most significant parameter. High volumetric loads (above 2 g acetate l−1 h−1) gave poor acetate oxidation efficiency (only 17 to 50%). When the volumetric load was in the range of 0.60–1.75 g acetate l−1 h−1, acetate oxidation efficiency was 50–75%. At lower volumetric loads (0.14–0.58 g acetate l−1 h−1), complete acetate consumption was achieved. On the basis of the obtained results, it can be concluded that HRTB is suitable for conducting aerobic continuous bioprocesses.  相似文献   

4.
Mixing studies in the horizontal rotating tubular bioreactor (HRTB) were done to explore the influences of the liquid level (H M =0.050.08 m) and the distance between the partition walls (D S =0.020.07 m) on the mixing performance in the bioreactor described by the “spiral flow” model. The optimised adjustable parameters of the model were correlated with the process parameters of the bioreactor expressed as dimensionless numbers: Reynolds rotation number (Re N ) and Reynolds axial flow number (Re D ). The polynomial coefficients of the correlations were correlated further with the liquid level in the bioreactor (H M ) and the distance between the partition walls (D S ). In that way, three modified prediction systems (SC-2A, SC-6A and SC-9A) were established. The analysis based on different criteria selected the prediction system SC-9A as the most suitable to describe the mixing performance of HRTB.  相似文献   

5.
A horizontal rotating tubular bioreactor (HRTB) is a combination of a “thin-layer bioreactor” and a “biodisc” reactor. Its interior is divided by O-ring shaped partition walls. Mixing properties of this new type of the bioreactor were investigated by using a temperature step method. The mixing simulations were done by Runge-Kutta-Fehlberg numerical integration. Adjustable parameters of the “spiral flow” model were optimised by Monte-Carlo method. In this investigation, the structured “spiral flow” model (containing four adjustable parameters) was tested in a wide range of experimental conditions. The results show that the structured “spiral flow” model is capable to describe the mixing in HRTB in the whole range of both bioreactor operational parameters (n and D).  相似文献   

6.
In this work, the heterotrophic cultivation of bacterium Paracoccus denitrificans has been studied in a horizontal rotating tubular bioreactor (HRTB). After development of a microbial biofilm on the inner surface of the HRTB, conditions for one-step removal of acetate and ammonium ion were created. The effect of bioreactor process parameters [medium inflow rate (F) and bioreactor rotation speed (n)] on the bioprocess dynamics in the HRTB was studied. Nitrite and nitrogen oxides (NO and N2O) were detected as intermediates of ammonium ion degradation. The biofilm thickness and the nitrite concentration were gradually reduced with increase of bioreactor rotation speed when the medium inflow rate was in the range of 0.5–1.5 l h−1. Further increase of inflow rate (2.0–2.5 l h−1) did not have a significant effect on the biofilm thickness and nitrite concentration along the HRTB. Complete acetate consumption was observed when the inflow rate was in the range of 0.5–1.5 l h−1 at all bioreactor rotation speeds. Significant pH gradient (cca 1 pH unit) along the HRTB was only observed at the highest inflow rate (2.5 l h−1). The results have clearly shown that acetate and ammonium ion removal by P. denitificans can be successfully conducted in a HRTB as a one-step process.  相似文献   

7.
Bioprocess and Biosystems Engineering - Fossil fuels are still major energy sources, but the search for renewable energy sources has been encouraged. Bioethanol has been recognized as an...  相似文献   

8.
A horizontal rotating tubular bioreactor (HRTB) is designed as the combination of a "thin layer bioreactor" and a "biodisc" reactor. The investigation of mixing in HRTB was done by the temperature step method in a wide range of process conditions [residence time (tz=360036000 s) and bioreactor rotation speed (n=0.0830.917 sу)]. In all experiments heat losses were detected. A mathematical model based on "tank in series" concept was developed to describe the mixing in HRTB - a "spiral flow" model (SFM) which has incorporated heat losses. However, the simulations of SFM could be used for calculation of temperature response curves for the case when there is no heat losses. These corrected curves were used then to estimate Bodenstein number as a parameter of standard dispersion model (SDM). The obtained Bodenstein numbers were in the range 10-17. The simulations showed that SFM was more capable to describe the mixing in HRTB giving better fitting with experimental measurements than SDM, indicating that mixing pattern in HRTB is too complex to be described with this relatively simple, one-parameter model.  相似文献   

9.
《Process Biochemistry》2010,45(8):1393-1400
In this study, mathematical modeling of a horizontal tubular loop bioreactor (HTLB) was considered for biomass production from natural gas. Gas inlet segments, static mixers, gas–liquid separator, and liquid pump of the HTLB were mathematically modeled according to the ideal stirred reactors, and the horizontal parts, riser, and down-comer sections were modeled in line with the dispersed plug-flow reactors as well. The set of ordinary and partial differential equations were coupled to calculate the oxygen and methane concentrations in the liquid through the length of bioreactor and time. Moreover, the tuned kinetic and hydrodynamic parameters of SCP process in the HTLB were determined based on the mathematical model at various operational conditions. The model was validated by considering experimental dissolved oxygen, methane, and biomass concentrations in liquid at different ratios of air to methane and liquid flow rates. The results showed satisfactory agreement between the developed model and the experimental data.  相似文献   

10.
A self-designed horizontal rotating bioreactor (HRR) was applied for enzymatic hydrolysis of pretreated corn stover to improve the process economics of ethanol production. The mixing principle was based on gravity and free fall employed with tank-rotating. The liquefaction performances using the HRR and the vertical stirred-tank reactor (VSTR) with a helical impeller were compared and analyzed by measuring rheological properties of the slurry. During the enzymatic hydrolysis, viscosity decreased dramatically in the initial phase for both bioreactors and more pronouncedly for the HRR. Rheological parameters fitted to the power law showed that shear thinning properties of the slurry weakened during the reaction. The glucose concentration was used to define the efficiency of the saccharification reaction. The HRR also proved to be more efficient for glucose release with both the constant and fed-batch substrate addition modes. Liquefaction and saccharification at 25 % w/w dry matter (DM) and enzyme loading of 7 FPU/g DM resulted in the optimal glucose concentration of 86 g/kg. Results revealed a decrease in cellulose conversion at increasing initial DM, which was slighter in the HRR compared with that in the VSTR.  相似文献   

11.
Industrial wastewaters polluted with toxic heavy metals are serious ecological and environmental problem. Therefore, in this study multi-heavy metals (Fe2+, Cu2+, Ni2+ and Zn2+) removal process with mixed microbial culture was examined in the horizontal rotating tubular bioreactor (HRTB) by different combinations of process parameters. Hydrodynamic conditions and biomass sorption capacity have main impact on the removal efficiency of heavy metals: Fe2+ 95.5–79.0%, Ni2+ 92.7–54.8%, Cu2+ 87.7–54.9% and Zn2+ 81.8–38.1%, respectively. On the basis of experimental results, integral mathematical model of removal heavy metals in the HRTB was established. It combines hydrodynamics (mixing), mass transfer and kinetics to define bioprocess conduction in the HRTB. Mixing in the HRTB was described by structured cascade model and metal ion removal by two combined diffusion–adsorption models, respectively. For Langmuir model, average variances between experimental and simulated concentrations of metal ions were in the range of 1.22–10.99 × 10−3 and for the Freundlich model 0.12–3.98 × 10−3, respectively. On the basis of previous facts, it is clear that developed integral bioprocess model with Freundlich model is more efficient in the prediction of concentration of metal ions in the HRTB. Furthermore, the results obtained also pointed out that the established model is at the same time accurate and robust and therefore it has great potential for use in the scale-up procedure.  相似文献   

12.
In this study, the bioconversion of clove oil into vanillin using soybean lipoxygenase (SBLOX) as biocatalyst was investigated in a silicon rubber membrane bioreactor (SRMBR) and shaking flasks. High performance liquid chromatography (HPLC) analysis indicated that the vanillin concentration was 8.14 mg/L after 36 h of conversion in a shaking flask. It reached up to 121.53 mg/L in the receiving solution after 36 h of conversion in the SRMBR. The conversion rate of clove oil was 0.033% in the shaking flask. It was 1.01% in the SRMBR. The peak area ratio of vanillin in the receiving solution of the SRMBR was 70.08%. By adding activated carbon into the conversion broth of the SRMBR, the vanillin concentration in the receiving solution reached 140.27 mg/L, the conversion rate of clove oil increased to 1.14%, and the peak area ratio of vanillin in the receiving solution reached 93.53%.  相似文献   

13.
A novel immobilised bioreactor has been developed especially for the treatment of pollutants characterized by high volatility along with high water solubility and low microbial yields. The new bioreactor referred to as the rotating rope bioreactor (RRB) provides higher interfacial area (per unit reactor liquid volume) along with high oxygen mass transfer rate, greater microbial culture stability; and consequently higher substrate loadings and removal rates in comparison to other conventional rectors for the treatment of volatile compounds. Pyridine was used as a model compound to demonstrate the enhanced performance with RRB, when compared to that reported with other conventional bioreactors. The experimental results indicate that the novel RRB system is able to degrade pyridine with removal efficiency of more than 85% at higher pyridine concentration (up to 1000 mg/l) and loading [up to 400 mg/m(2)/h (66.86 g/m(3)/h)], with a shorter hydraulic retention time (9-18 h). The reactor has been in operation for the past 15 months and no loss of activity has been observed.  相似文献   

14.
A membrane bioreactor was developed to perform an extractive bioconversion aimed at the production of isovaleraldehyde by isoamyl alcohol oxidation with whole cells of Gluconobacter oxydans. A liquid/liquid extractive system using isooctane as extractant and assisted by a hollow-fiber hydrophobic membrane was chosen to recover the product. The aqueous bioconversion phase and the organic phase were maintained apart with the aid of the membrane. The extraction of alcohol and aldehyde was evaluated by performing equilibrium and mass transfer kinetic studies. The bioprocess was then performed in a continuous mode with addition of the substrate to the aqueous phase. Fresh solvent was added to the organic phase and exhausted solvent was removed at the same flow rate. The extractive system enabled a fast and selective in situ removal of the aldehyde from the water to the organic phase. High conversions (72–90%) and overall productivity (2.0–3.0 g l−1 h−1) were obtained in continuous experiments performed with different rates of alcohol addition (1.5–3.5 g l−1 h−1). Cell deactivation was observed after 10–12 h of operation.  相似文献   

15.
The attrition bioreactor (ABR) combines wet ball milling and enzymatic hydrolysis in one process step. It was found that the ABR did not accelerate enzyme deacti-vation. Interfacial forces, not shear forces, caused the most deactivation. Elimination of the air-liquid interface by covering the reactor substantially increased enzyme stability. A simple exponential kinetic model was tested to predict the cellulose conversion in an ABR. Kinetic parameters were estimated from batch runs performed at various enzyme and substrate concentrations.  相似文献   

16.
In order to increase the eco-efficiency and overall availability of naturally renewable resource, the novel bioconversion of steam-exploded wheat straw to bio-organic fertilizer containing N2-fixer, P and K solubilizers was investigated. The conversion was performed in solid-state fermentation (SSF) with periodic air-forced pressure oscillation (PAPO). The results showed that SSF-PAPO was competitive with the conventional solid-state fermentation (cSSF) in biomass accumulation and wheat straw digestion. With solid–liquid ratio 1:3, microbial biomass production at 72 h was high up to 2 × 1011 cfu g−1, nearly twice as that in cSSF. The degradation rate of cellulose, hemicellulose and lignin after fermentation in SSF-PAPO reached 48.57 ± 10.66, 84.77 ± 2.75 and 2.15 ± 10.11, respectively, which was greater than that of 29.30 ± 10.28%, 33.47 ± 4.85% and 0.53 ± 9.07% in cSSF, correspondingly. The SSF-PAPO system displayed unique advantage, by a novel gas phase control strategy on gas concentration and heat gradient, on the bioconversion of wheat straw to the bio-organic fertilizer.  相似文献   

17.
Summary The rate of continuous alcohol fermentation by a mixture of free and immobilized yeast cells was found to be higher in a horizontal flow channel reactor than in a vertical column reactor under the same operational conditions. This higher fermentation rate in the horizontal reactor was attributed to accumulation of yeast cells in the reactor by free sedimentation and incomplete mixing in the direction of liquid flow. It was estimated that most of the ethanol in the horizontal bioreactor was produced by free cells in suspended or settled states. The relatively low ethanol production by the immobilized yeast cells on the ethanol production was considered due to higher product inhibition of fermentation rate within the support.  相似文献   

18.
Production of lipopeptides fengycin and surfactin in rotating discs bioreactor was studied. The effects of rotation velocity and the addition of agitators between the discs on volumetric oxygen transfer coefficient k L a were firstly studied in model media. Then the production of lipopeptides was also studied at different agitation conditions in the modified bioreactor (with agitators). The effect of agitation on dissolved oxygen, on submerged and immobilized biomass, on lipopeptide concentrations and yields and on the selectivity of the bioreaction was elucidated and discussed. The proposed modified rotating discs bioreactor allowed to obtain high fengycin concentrations (up to 787 mg L?1), but also better selectivity of the bioreaction towards fengycin (up to 88 %) and better yields of fengycin per glucose (up to 62.9 mg g?1), lipopeptides per glucose (up to 71.5 mg g?1), fengycin per biomass (up to 309 mg g?1) and lipopeptides per biomass (up to 396 mg g?1) than those reported in the literature. Highest fengycin production and selectivity were obtained at agitation velocity of 30 min?1. The proposed non-foaming fermentation process could contribute to the scale-up of lipopeptide fermentors and promote the industrial production of fengycin. The proposed bioreactor and bioprocess could be very useful also for the production of other molecules using bioprocesses requiring bubbleless oxygen supply.  相似文献   

19.
Summary The keratin-degrading actinomycete Streptomyces fradiae was cultured in a bioreactor of novel design in which the wool substrate was wound over a supporting frame partially immersed in salts medium and slowly rotated during the course of fermentation. Both disulphide reductase and keratinase enzyme activities were detected in culture supernatants and the substrate was almost totally solubilized.  相似文献   

20.
Cellulose hydrolysis by Celluclast 1.5L (Novozymes A/S, Denmark) enzyme preparation was studied in a special tubular membrane reactor, where a porous stainless steel filter was covered by a non-woven technical textile layer providing a fine, hairy surface for simultaneous adsorption of both the cellulose particles and the biocatalyst. Solka Floc BW 200 powder and Mavicell pellets were used as substrates in the process. Beyond the adsorption studies, the composite membrane was characterized, having 30 l/m2 bar h hydraulic permeability and an ability to retain both cellulose and enzyme, while glucose (product) permeated easily across the membrane. Using Solka Floc substrate experiments were carried out in both the hairy tubular and a “normal” flat sheet membrane bioreactor. It was found that 10% higher average conversion was possible to achieve in the special layered tubular unit compared to the “traditional” ultrafiltration membrane reactors. Finally, milled and sieved Mavicell pellets were applied as substrates, and 70% conversion was reached with the pretreated fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号