首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Process Biochemistry》2004,39(6):731-736
Trichoderma reesei Rut C-30 was cultivated in bioreactors at different pH on a medium with lactose as the main carbon source. Compared to an earlier study, in which T. reesei Rut C-30 was cultivated using polysaccharides (cellulose or xylan) as the main carbon sources, we now report a slightly lower pH value for maximal xylanase levels. The highest xylanase activity (IU/ml) on the lactose-based medium was observed at pH 6.0 compared to pH 7.0 on the polysaccharide-based media. When the pattern of different xylanases was analyzed by isoelectric focusing and activity zymogram, we observed that a low pH (4.0) favoured the production of xylanase I, whilst a high pH (6.0) favoured the production of xylanase III. Xylanase II was clearly produced at both pH values. The results at pH 4 and 6 correlate with the pH activity profiles of xylanase I, II and III. Hence, the different T. reesei xylanases were produced according to which enzyme is most active in that particular environment.  相似文献   

2.
The aim of this work was to make a survey describing factors that influence the production of extracellular enzymes by white-rot fungus Ceriporiopsis subvermispora responsible for the degradation of lignocellulolytic materials. These factors were: carbon sources (glucose, cellulose, hemicellulose, lignin, maltose and starch), nitrogen sources (ammonium sulphate, potassium nitrate, urea, albumin and peptone), pH, temperature and addition of three different concentrations of Cu2+ and Mn2+. The cellulase and xylanase activities were similar in medium with different carbon sources and the highest cellulase and xylanase activities were measured in medium with urea and potassium nitrate as nitrogen sources, respectively. The highest laccase activity was observed in medium with lignin and peptone as carbon and nitrogen sources. In other experiments, time course of production of lignocellulolytic enzymes by white-rot fungus C. subvermispora in medium with lignin or glucose as carbon sources was observed.  相似文献   

3.
Synthesis of extracellular xylanase in Cellulomonas flavigena is induced in the presence of xylan and sugarcane bagasse as substrates. The essential factors for efficient production of xylanase are the appropriate medium composition and an inducing substrate. The increase in xylanase production levels in C. flavigena were tested with a number of carbon sources and different culture conditions. Xylose, arabinose, glycerol and glucose did not induce xylanase production in this microorganism. β-Methyl-xyloside (β-mx), a structural analog of xylobiose, also did not induce xylanase when used as the sole carbon source, but when xylan or sugar cane bagasse was supplemented with β-mx, extracellular xylanase production increased by 25 or 46%, respectively. The response of C. flavigena to xylan plus β-mx was accompanied by a significant accumulation of reducing sugar, an effect not observed with the combination sugarcane bagasse plus β-mx as substrate. To our knowledge, this is the first report on the effect of β-mx on the induction of xylanase in C. flavigena.  相似文献   

4.
A xylanase gene (xyn2) from Trichoderma reesei ATCC 58350 was previously cloned and expressed in Kluyveromyces lactis GG799. The production of the recombinant xylanase was conducted in a developed medium with an optimised batch and with fed-batches that were processed with glucose. The glucose served as a carbon source for cell growth and as an inducer for xylanase production. In a 1-L batch system, a glucose concentration of 20 g L?1 and 80 % dissolved oxygen were found to provide the best conditions for the tested ranges. A xylanase activity of 75.53 U mL?1 was obtained. However, in the batch mode, glucose depletions reduced the synthesis of recombinant xylanase by K. lactis GG799. To maximise the production of xylanase, further optimisation was performed using exponential feeding. We investigated the effects of various nitrogen sources combined with the carbon to nitrogen (C/N) molar ratio on the production of xylanase. Of the various nitrogen sources, yeast extract was found to be the most useful for recombinant xylanase production. The highest xylanase production (110.13 U mL?1) was measured at a C/N ratio of 50.08. These conditions led to a 45.8 % increase in xylanase activity compared with the batch cultures. Interestingly, the further addition of 500 g L?1 glucose led to a 6.2-fold increase (465.07 U mL?1) in recombinant xylanase activity. These findings, together with those of the exponential feeding strategy, indicate that the composition of the C/N molar ratio has a substantial impact on recombinant protein production in K. lactis.  相似文献   

5.
Studies were carried out to screen and identify strains that are able to directly produce ferulic oligosaccharides (FOs) from wheat bran (WB). The inducement and distribution of hemicellulases from strain 2012, which was identified as a non-melanin secreting strain of Aureobasidium pullulans (A. pullulans), were also determined. In a 60 g/L WB solution, A. pullulans could produce 545 nmol/L FOs, 64.12 IU/mL xylanase and 0.14 IU/mL ferulic acid esterase (FAE). A. pullulans was cultivated in media with WB, glucose, xylose, sucrose, lactose or xylan as the carbon source, and hemicellulases were mainly induced by xylan and WB and inhibited by glucose and sucrose. Xylanase and FAE were mainly present in the culture filtrate, xylosidase in the hyphal filaments and arabinofuranosidase was a membrane-bound enzyme. The yield of FOs was positively correlated to the hemicellulases activity, and significantly positively (P < 0.05) correlated to the xylanase activity (r = 0.992).  相似文献   

6.
《FEMS microbiology letters》1995,125(2-3):305-310
The β-1,4-endoglucanase of the ruminai bacterium, Prevotella ruminicola B14, hydrolysed carboxymethylcellulose and barley glucan but not xylan or mannan. Endoglucanase activity was present in 88- and 82-kDa proteins, and there was at least a 20-fold variation in endoglucanase activity when P. ruminicola B14 was grown on different sugars. The highest activities were observed with mannose, cellobiose or xylose and little activity was observed with sucrose, arabinose or rhamnose. P. ruminicola B14 also had significant xylanase and mannanase activities, but these activities were present in proteins that had lower molecular masses than the endoglucanase and these proteins did not cross-react with antibody made against the endoglucanase. Mannanase activity has a similar pattern of expression to the endoglucanase, while the xylanase was not induced or repressed by the same sugars or combinations of sugars. The xylanase activity was greatest when xylan was the energy source for growth, but xylose was a very poor inducer of xylanase activity.  相似文献   

7.
Culture conditions for efficient production of extracellular xylanase by fungus, Chaetomium globosum isolate Cg2, have been standardized. Further, xylanase has been partially purified and characterized. Xylanase activity was maximum after 9 days of incubation when amended in medium with 1.5 % xylan as carbon source and 0.6% NH4H2PO4 as nitrogen source. Partial purification of the xylanase was accomplished by ammonium sulphate precipitation, followed by further purification by anion exchange chromatography on DEAE-Sephadex A-50 column. The partially purified enzyme was electrophoresed on SDS-PAGE and a single band produced corresponded to molecular weight, 32 kD. The optimum temperature and pH for maximum activity of purified xylanase were 30°C and 5.5, respectively. Both the purified xylanase and culture filtrate have shown the antifungal activity against Bipolaris sorokiniana, a causal organism of spot blotch of wheat. Purified xylanase at 100 μg ml?1 concentration caused 100 per cent inhibition of conidia germination of B. sorokiniana, whereas the culture filtrate was able to inhibit germination up to 67.5 per cent.  相似文献   

8.
一株产木聚糖酶链霉菌的鉴定及发酵产酶*   总被引:8,自引:0,他引:8  
以木聚糖为唯一碳源,筛选出一株高产木聚糖酶生产菌株。该菌株经形态特征、 培养特征、生理生化和细胞壁组分分析等实验,鉴定为卷须链霉菌(Streptomyces cirratus).摇瓶发酵产酶实验表明:培养基最佳初始pH值为6.0;玉米芯水不溶木聚糖和蛋白胨分别是最佳的碳源和氮源;添加0.5%吐温80使得木聚糖酶活力提高到原来的2.5倍,发酵液最高酶活达到623u/mL。  相似文献   

9.
里氏木霉GXC木聚糖酶的研究   总被引:2,自引:0,他引:2  
研究了里氏木霉GXC产木聚糖酶的条件和酶学性质。结果表明,适宜产酶碳源为乳糖、甘露糖、棉子糖、木聚糖和麸皮,氮源为牛肉膏和酵母膏;产酶的最适初始pH为4.0,30℃培养60h。对以麸皮为碳源的培养液进行纯化的酶特性研究表明,木聚糖酶的最适反应温度为50℃,pH为5.5,该酶在pH5.0(7.0和40℃以下相对稳定。Fe3+和Mn2+对木聚糖酶有较大的促进作用,Cu~2+、Fe~2+和Ca~2+ 具有抑制作用。  相似文献   

10.
Summary The production of xylanase from Bacillus coagulans has been studied with respect to the environmental parameters, the carbon source and the concentration of carbon source at the shake flask level. Among the various carbon sources used, wheat straw powder favoured higher enzyme production. Xylan isolated from wheat straw gave higher enzyme production as compared to the birchwood xylan. Maximum enzyme activity of 165 IU/ml was obtained with 2% wheat straw xylan in a shake flask study. Improvement of xylanase production was achieved by increasing the wheat straw powder concentration up to 3%. Enzyme has optimum activity at a temperature of 55 °C and pH of 7. The concentrated crude enzyme was found to reduce the kappa number of enzyme-treated eucalyptus pulp by␣5.45% with a marginal increase in the CED viscosity of the enzyme treated pulp as compared to the non-enzymatically treated pulp.  相似文献   

11.
Xanthomonas axonopodis pv. punicae strain—a potent plant pathogen that causes blight disease in pomegranate—was screened for cellulolytic and xylanolytic enzyme production. This strain produced endo-β-1,4-glucanase, filter paper lyase activity (FPA), β-glucosidase and xylanase activities. Enzyme production was optimized with respect to major nutrient sources like carbon and nitrogen. Carboxy methyl cellulose (CMC) was a better inducer for FPA, CMCase and xylanase production, while starch was found to be best for cellobiase. Soybean meal/yeast extract at 0.5 % were better nitrogen sources for both cellulolytic and xylanolytic enzyme production while cellobiase and xylanase production was higher with peptone. Surfactants had no significant effect on levels of extracellular cellulases and xylanases. A temperature of 28 °C and pH 6–8 were optimum for production of enzyme activities. Growth under optimized conditions resulted in increases in different enzyme activities of around 1.72- to 5-fold. Physico-chemical characterization of enzymes showed that they were active over broad range of pH 4–8 with an optimum at 8. Cellulolytic enzymes showed a temperature optimum at around 55 °C while xylanase had highest activity at 45 °C. Heat treatment of enzyme extract at 75 °C for 1 h showed that xylanase activity was more stable than cellulolytic activities. Xanthomonas enzyme extracts were able to act on biologically pretreated paddy straw to release reducing sugars, and the amount of reducing sugars increased with incubation time. Thus, the enzymes produced by X. axonopodis pv. punicae are more versatile and resilient with respect to their activity at different pH and temperature. These enzymes can be overproduced and find application in different industries including food, pulp and paper and biorefineries for conversion of lignocellulosic biomass.  相似文献   

12.
Xylanase production by the Antarctic psychrophilic yeast Cryptococcus adeliae was increased 4.3 fold by optimizing the culture medium composition using statistical designs. The optimized medium containing 24.2 g l−1 xylan and 10.2 g l−1 yeast extract and having an initial pH of 7.5 yielded xylanase activity at 400 nkat (nanokatal) ml−1 after 168-h shake culture at 4°C. In addition, very little endoglucanase, β-mannanase, β-xylosidase, β-glucosidase, α-l-arabinofuranosidase, and no filter paper cellulase activities were detected. Among 12 carbon sources tested, maximum xylanase activity was induced by xylan, followed by lignocelluloses such as steamed wheat straw and alkali-treated bagasse. The level of enzyme activity produced on other carbon sources appeared to be constitutive. Among the complex organic nitrogen sources tested, the xylanase activity was most enhanced by yeast extract, followed by soymeal, Pharmamedia (cotton seed protein), and Alburex (potato protein). A batch culture at 10°C in a 5-l fermenter (3.5-1 working volume) using the optimized medium gave 385 nkat at 111 h of cultivation. The crude xylanase showed optimal activity at pH 5.0–5.5 and good stability at pH 4–9 (21 h at 4°C). Although the enzyme was maximally active at 45°–50°C, it appeared very thermolabile, showing a half-life of 78 min at 35°C. At 40°–50°C, it lost 71%–95% activity within 5 min. This is the first report on the production as well as on the properties of thermolabile xylanase produced by an Antarctic yeast. Received: December 10, 1999 / Accepted: March 23, 2000  相似文献   

13.
研究了里氏木霉GXC产木聚糖酶的条件和酶学性质。结果表明,适宜产酶碳源为乳糖、甘露糖、棉子糖、木聚糖和麸皮,氮源为牛肉膏和酵母膏;产酶的最适初始pH为4.0,30℃培养60h。对以麸皮为碳源的培养液进行纯化的酶特性研究表明,木聚糖酶的最适反应温度为50℃,pH为5.5,该酶在pH5.0(7.0和40℃以下相对稳定。Fe3+和Mn2+对木聚糖酶有较大的促进作用,Cu~2+、Fe~2+和Ca~2+ 具有抑制作用。  相似文献   

14.
J. Kaur    G. D. Munshi    R. S. Singh    E. Koch 《Journal of Phytopathology》2005,153(5):274-279
Three isolates of Trichoderma atroviride and two isolates of Coniothyrium minitans known to efficiently degrade sclerotia of Sclerotinia sclerotiorum were cultured on minimal medium with sucrose, carboxymethyl cellulose (CMC), xylan, laminarin, colloidal chitin or powdered sclerotia as carbon source. The activity of endochitinase, endo‐β‐1,3‐glucanase, endoxylanase and endocellulase in culture filtrates was determined after 7 and 15 days of culture using dye‐labelled substrates. The strongest inducers of chitinase were colloidal chitin and sclerotia powder. Chitinase activity appeared to be faster induced in the isolates of T. atroviride than in the isolates of C. minitans, but the maximum level of activity present in culture filtrates of the two species was similar. With CMC and xylan as carbon source, concurrent production of the corresponding enzymes was observed for the Trichoderma isolates. The isolates of C. minitans produced cellulase on xylan but not on CMC, whereas xylanase was produced on both carbon sources. Laminarin induced the formation of glucanases in the three isolates of T. atroviride but not the isolates of C. minitans. However, in the sclerotia‐containing cultures of C. minitans glucanase activity was even higher than in the respective cultures of the Trichoderma isolates. During the 31‐day study period, the pattern of enzyme production in shake cultures containing sclerotia powder was very similar for the isolates of T. atroviride and C. minitans. Glucanase activity generally reached a peak 24 days after inoculation of the flasks, whereas the activity of chitinase, cellulase and xylanase remained fairly constant throughout the experiment.  相似文献   

15.
Trichoderma reesei VTT-D-86271 (Rut C-30) was cultivatedon media based on cellulose and xylan as the main carbon source in fermentors with different pH minimum controls. Production of xylanase was favoured by a rather high pH minimum control between 6.0 and 7.0 on both cellulose- and xylan-based media. Although xylanase was produced efficiently on cellulose as well as on xylan as the carbon source, significant production of cellulose was observed only on the cellulose-based medium and best production was at lower pH (4.0 minimum). Production of xylanase at pH 7.0 was shown to be dependent on the nature of the xylan in the cultivation medium but was independent of other organic components. Best production of xylanase was observed on insoluble, unsubstituted beech xylan at pH 7.0. Similar results were obtained in laboratory and pilot (200-l) fermentors. Downstream processing of the xylanase-rich, low-cellulose culture filtrate presented no technical problems despite apparent autolysis of the fungus at the high pH. Enzyme produced in the 200-l pilot fermentor was shown to be suitable for use in enzyme-aided bleaching of kraft pulp. Due to the high xylanase/cellulase ratio of enzyme activities in the culture filtrate, pretreatment for removal of cellulase activity prior to pulp bleaching was unnecessary. Correspondence to: M. J. Bailey  相似文献   

16.
Aspergillus fumigatus andA. oryzae were cultivated in laboratory fermenters on media containing xylan as the main carbon source.A. fumigatus produced xylanase on unsubstituted, insoluble beech xylan but growth and enzyme production on soluble xylo-oligosaccharides from the steaming of hardwood were poor due to the presence of inhibitors. An essential prerequisite for good xylanase production byA. fumigatus was decrease in the pH of the cultivation below 3.0 At higher pH values, the production of proteolytic enzymes caused degradation of the xylanase activity already produced.A. oryzae produced rather less xylanase activity thanA. fumigatus on the beech xylan medium but, after adaptation, was capable of efficient enzyme production on the steamed substrate.M.J. Bailey and L. Viikari are with the VTT, Biotechnical Laboratory, PO Box 202, SF-02151 Espoo, Finland  相似文献   

17.
Xylanolytic Activity of Clostridium acetobutylicum   总被引:12,自引:9,他引:3       下载免费PDF全文
Of 20 strains of Clostridium spp. screened, 17 hydrolyzed larch wood xylan. Two strains of Clostridium acetobutylicum, NRRL B527 and ATCC 824, hydrolyzed xylan but failed to grow on solid media with larch xylan as the sole carbon source; however, strain ATCC 824 was subsequently found to grow on xylan under specified conditions in a chemostat. These two strains possessed cellulolytic activity and were therefore selected for further studies. In cellobiose-limited continuous cultures, strain NRRL B527 produced maximum xylanase activity at pH 5.2. Strain ATCC 824 produced higher xylanase, xylopyranosidase, and arabinofuranosidase activities in chemostat culture with xylose than with any other soluble carbon source as the limiting nutrient. The activities of these enzymes were markedly reduced when the cells were grown in the presence of excess glucose. The xylanase showed maximum activity at pH 5.8 to 6.0 and 65°C. The enzyme was stable on the alkaline side of pH 5.2 but was unstable below this pH value. The extracellular xylanolytic activity from strain ATCC 824 hydrolyzed 12% of the larch wood xylan during a 24-h incubation period, yielding xylose, xylobiose, and xylotriose as the major hydrolysis products. Strain ATCC 824, after being induced to grow in batch culture in xylan medium supplemented with a low concentration of xylose, failed to grow reproducibly in unsupplemented xylan medium. A mutant obtained by mutagenesis with ethyl methanesulfonate was able to grow reproducibly in batch culture on xylan. Both the parent strain and the mutant were able to grow with xylan as the sole source of carbohydrate in continuous culture with the pH maintained at either 5.2 or 6.0. Under these conditions, the cells utilized approximately 50% of the xylan.  相似文献   

18.
Neurospora crassa 870 produced 14 and 0.025 U of extracellular xylanase (1,4-beta-d-xylan xylanohydrolase; EC 3.2.1.8) and beta-xylosidase (1,4-beta-xylan xylohydrolase; EC 3.2.1.37) per ml, respectively, in 4 days when commercial xylan was used as a carbon source. The effects of pH and carbon sources on xylanase production by N. crassa are discussed. Two xylanases (I and II) were purified and had pI values of 4.8 and 4.5 and molecular weights of 33,000 and 30,000. The maximum degree of hydrolysis of xylan by the extracellular culture broth was 66% in 4 h. The end products of xylan hydrolysis by xylanase I and II showed the presence of xylose, xylobiose, xylotriose, xylotetraose, xylopentose, and arabinose, indicating that they are endoxylanases capable of hydrolyzing 1,3-alpha-l-arabinofuranosyl branch points. Both xylanases showed activity toward carboxymethyl cellulose but no activity toward para-nitrophenyl-beta-d-xyloside or laminarin. Xylanase I showed appreciable activity toward para-nitrophenyl-beta-d-glucoside, whereas xylanase II was inactive.  相似文献   

19.
A halophilic and alkali-tolerant Chromohalobacter sp. TPSV 101 with an ability to produce extracellular halophilic, alkali-tolerant and moderately thermostable xylanase was isolated from solar salterns. Identification of the bacterium was done based upon biochemical tests and 16S rRNA sequence. The culture conditions for higher xylanase production were optimized with respect to NaCl, pH, temperature, substrates and metal ions and additives. Maximum xylanase production was achieved in the medium with 20% NaCl, pH-9.0 at 40°C supplemented with 1% (w/v) sugarcane bagasse and 0.5% feather hydrolysate as carbon and nitrogen sources. Sugarcane bagasse (250 U/ml) and wheat bran (190 U/ml) were the best inducer of xylanase when used as carbon source as compared to xylan (61 U/ml). The xylanase that was partially purified by protein concentrator had a molecular mass of 15 kDa approximately. The xylanase from Chromohalobacter sp. TPSV 101 was active at pH 9.0 and required 20% NaCl for optimal xylanolytic activity and was active over a broad range of temperature 40–80°C with 65°C as optimum. The early stage hydrolysis products of sugarcane bagasse were xylose and xylobiose, after longer periods of incubation only xylose was detected.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号